
Fluid Dynamics
• The study of fluid mechanics in which the forces and 

energies are considered along with the motion.

• Types of forces –
Body forces – proportional to volume or weight

e.g. centrifugal, magnetic, gravity etc.

 Surface forces – proportional to area e.g. 
pressure, shear or tangential 
forces

 Line forces – proportional to length e.g. surface 
tension

• Similar to solid mechanics fluid dynamics is also 
governed by Newton’s second law of motion.
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Newton’s Second law and Fluid

• Resultant force on any fluid element must be equal to the 

product of mass and the acceleration the element in the same 

direction

z z
F Ma

y y
F Ma

x x
F Ma

F Ma

Total force Force per unit volume

z z
f a

y y
f a

f a

x x
f a

a is the acceleration of fluid particle, F is the total force acting on fluid particle and

ρ is the mass density; x, y and z indicate the suffix for the components along

respective directions



Various forces acting on the fluid

• Gravity Force Fg = Mg

• Pressure Force, Fp

• Viscous force, Fv

• Turbulent Force, Ft

• Surface Tension, Fs

• Compressibility 

Force, Fe

g p v t s eMa F F F F F F     

x gx p vx tx sx exMa F F x F F F F     

y gxy py vy ty sy eyMa F F F F F F     

z gz pz vz tz sz ezMa F F F F F F     
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Reynolds Equations of fluid motion

x gx p vx txMa F F x F F   

y gxy py vy tyMa F F F F   

z gz pz vz tzMa F F F F   

For fluid in motion the forces due to surface tension and the

compressibility effects are negligible

g p v tMa F F F F   
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These equations are useful for the analysis of turbulent flow



Navier-Stokes Equations

g p vMa F F F  

x gx p vxMa F F x F  

y gxy py vyMa F F F  

z gz pz vzMa F F F  

For laminar or viscous flow the forces due to turbulence are

negligible
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These equations are useful for the analysis of laminar flow



Euler's  Equations for fluid flow

g pMa F F 

x gx pMa F F x 

y gxy pyMa F F 

z gz pzMa F F 

For ideal fluid flow the viscous forces are negligible
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These equations are useful if the viscosity of the fluid is 

negligible or insignificant.

The Euler's equation

is comprised of only

body and surface

forces



P (x,y,z)

Q

R

S

R’

S’

Q’

P’

δx

Derivation of Euler's  Equation

δzδy
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p
p x

x




p y z 



• Let X, Y and Z be the components of body forces per 

unit mass at point P

• Mass of parallelepiped = (ρδxδyδz)

• Total component of body force in X-dirn = X (ρδxδyδz)

• Total component of body force in Y-dirn = Y (ρδxδyδz)

• Total component of body force in Z-dirn = Z (ρδxδyδz)

• Pressure intensity at P = p

• Total pressure force acting on PQRS = p (δyδz)

• Pressure intensity on P’Q’R’S’ = 

• Total pressure force acting on PQRS =

p
p x

x






Derivation of Euler's  Equation

p
(p+ δx)δyδz

p




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• Net pressure force in X-dirn

( )px

p
F p y z p x y z

x
    


  



Derivation of Euler's  Equation

px

p
F x y z

x
  


 



py

p
F x y z

y
  


 

 pz

p
F x y z

z
  


 


and

Adding body forces and pressure forces in X-direction and

equating to the product of mass and acceleration in X-

direction

( ) ( ) x

p
X x y z x y z x y z a

x
         


 


---- A

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Similarly, 



• Thus

1
y

p
Y a

y


 



Derivation of Euler's  Equation

1
x

p
X a

x


 



1
z

p
Z a

z


 



• Similarly, Euler’s 

equations of 

fluid motion

x

u u u u
a u v w

t x y z

   
   
   

y

v v v v
a u v w

t x y z

   
   
   

z

w w w w
a u v w

t x y z

   
   
   

Where,
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Derivation of Euler's  Equation

1u u u u p
u v w X

t x y z x

    
     

    

1v v v v p
u v w Y

t x y z y

    
     

    

1w w w w p
u v w Z

t x y z z

    
     

    

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

No assumption that ρ is constant is made in these equations,

therefore these are applicable to compressible or

incompressible, non-viscous fluid flow in steady as well as

unsteady state



 Gives energy equation under following assumptions

1. There exists a force potential which is defined as the

function whose negative derivative wrt any direction

gives the component of body force per unit mass in that

direction (Ω). Thus,

2. The flow is irrotational i.e. velocity potential exists or the

flow may be rotational but it’s steady

X
x


 



Integration of Euler's  Equation

Y
y


 


Z

z


 


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1 p u u u u
X u v w

x t x y z

    
    

    

Integration of Euler's  Equation

;
u v u w

y x z x

   
 

   

u
x


 



21 p u v w
u v w

x x x t x x x





     
      
      
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When flow is irrotational

•Consider Euler’s equation in X-direction

•If flow is irrotational

•Existence of velocity potential

Therefore,



Integration of Euler's  Equation
2 2 2

0
2

p u v w

x t





    
    

  

2

1( , , )
2

p V
F y z t

t





 
    

 

2

2 ( , , )
2

p V
F x z t

t





 
    

 

Thus,

On integrating wrt x

2

3( , , )
2

p V
F x y t

t





 
    

 

Similarly, for Y and Z directions

Thus,
1 2 3( , , ) ( , , ) ( , , )F y z t F x z t F x y t 

Since x, y and z are the independent variables the above equation will

hold good only if these variables disappear from functional term and F is

only function of t



Integration of Euler's  Equation
2

( )
2

p V
F t

t





 
    

 

2

2

p V
C



 
   
 

0; 0; g
x y z

  
      
  

Therefore,

For steady flow,

If the body force exerted on the fluid is only due to gravity and if Z axis is 

so oriented that z is measured in vertical direction with reference to 

datum then, 

Since g is the force per unit mass and can be +ve when acting in 

downward direction 
1gz C  At z = 0 Ω = 0, therefore C1 = 0
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gz Therefore, 



2

2

p V
gz C



 
   

 

2

2

p V
z C

g g

 
   

 

Integration of Euler's  Equation

2

2

p V
z C

w g

 
   

 

Bernoulli’s Equation

 Energy  Equation as 

each term indicates energy 

per unit weight

Each term also indicate 

the head e.g. pressure, 

velocity and potential head

Thus, the Bernoulli’s theorem states that for steady flow

of an incompressible fluid the total energy which is the

summation of pressure, velocity and potential energy

remains constant at any point



Integration of Euler's  Equation

p

w

2

2

V

g

z

Pressure head; Velocity head or kinetic head;

Potential head or datum head

2 2

1 1 2 2
1 2

2 2
L

p V p V
z z h

w w

   
        

   

p
z

w

 
 

 
Piezometric head

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



• When flow is rotational but steady

• Consider an element of stream filament of CSA 
δa

Integration of Euler's  Equation

pδa
δs

(p+∂p/∂s)δa

s
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• Let S be the body force per unit mass along streamline

• Mass of fluid element = (ρδa δs)

• Total body force along S-direction = S (ρδa δs)

• Total pressure force on left end = pδa

• Total pressure force on right end = [p+(∂p/∂s) δs] δa

[( ) ( ) ]ps

p p
F p a p s a s a

s s
    

 
    

 

Integration of Euler's  Equation

21

2
s

V V
a V

s s

 
 

 
Steady flow acceleration 

21
( ) ( )

2

p V
S s a s a s a

s s
     

 
 
 

Newton’s second law 

of motion
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Integration of Euler's  Equation

S
s


 



2

2

p V
C


  

21 1
0

2

p V

s s s

  
  

  
Therefore,

2

2

p V
C




  

For incompressible flow

For compressible flow

gz 
2

2

p V
gz C


  

2

2

p V
z C

w
  or
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If the flow is irrotational then the same

Bernoulli’s equation is applicable to all the

points in the flow field i. e. for all the streamlines

the value of constant is same.

For rotational flow the Bernoulli's equation is

applicable for a particular streamline i. e. the

value of constant is different for different

streamlines

Euler's  Equation – an important point
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Bernoulli’s Equation- Principle of 

conservation of energy

p1dA1

p2dA2

1

2

1’

2’

dA1
1

2

1’

2’

dA2

V1dt

V2dt

Z1

Z2

Machine work

In steady flow there is

no change in the state

of fluid between

Sections 1’-1’ and 2-2

dm=ρ2V2dtdA2

dm=ρ1V1dtdA1

Figure:- Free body of flowing fluid occupying a portion of stream tube between

two arbitrarily chosen sections 1-1 and 2-2



Derivation of BE using conservation of energy

• The general energy equation 

' '1 2' '

2

work done on the fluid Mechanical work

 by force during dt performed on the fluid 

Total energy of fluid Total energy of fluid

=          between           betwee

1  and 2  at t

   
   

   

 
 

 
    2

n 

        1-1 and 2-2 at t

 
 
 
  

' '1 2' '
22

Total energy of fluid Total energy of fluid Total energy of fluid

         between           between           between 

        1'-1' and 2-2 at t1  and 2  at t         2-2 an

   
   

    
       

1 2

' '

2

' '
1 1

d 2 -2  at t

Total energy of fluid Total energy of fluid Total energy of fluid

and          between           between          

1  and 2  at t         1-1 and 1 -1  at t

 
 
 
 
 

  
  

   
      

' '

1

 between 

        1 -1  and 2-2 at t

 
 
 
 
 
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• But



'1 2' ' '

2 1

Total energy of fluid Total energy of fluid

         between           between 

1  and 2  at t         1 -1  and 2-2 at t

   
   

   
       

Derivation of BE using conservation of energy

For steady flow the state of the flowing fluid in the stream tube 

within the region bounded by sections 1’-1’ and 2-2 remains 

unchanged wrt to time. Thus,

'2 2 2'

2

work done on the fluid Mechanical work

 by external forces during performed on the 

dt fluid 

   Total energy of  Total energy of 

=     fluid between   fl

 and 2  at t

   
   


   
      

 
 

 
   

' '

1

uid between 

1-1 and 1 -1  at t

 
 
 
 
 

Hence the general energy equation for steady flow of fluid is 

reduced to
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• For steady flow the mass flow at sections 1-1 and 2-2

during dt being same

Derivation of BE using conservation of energy

' '1 1 2 2' '

Fluid mass between Fluid mass between 

     1  and 1       2  and 2

   
   

      

Work done by pressure force (p1dA1) on the free body of the fluid in the 

stream tube during dt is + (p1dA1)(V1dt)

Work done by pressure force (p2dA2) on the free body of the fluid in the 

stream tube during dt is - (p2dA2)(V2dt)

Net work done performed by pressure forces on the free body of the 

fluid in the stream tube during dt is [(p1dA1)(V1dt) - (p2dA2)(V2dt)]
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If dm is the total mass of fluid flowing across section

1-1 during dt or if dm is actually the mass of fluid

within 1-1 and 1’-1’ or between 2-2 and 2’-2’, then

Derivation of BE using conservation of energy

1 1 2 2

1 2

( ) ; ( ) and 
dm dm

V dA dt V dA dt
 

 

Thus net work done by pressure forces on the free body of fluid is

1 2

1 2

p p
dm

 

 
 

 

Total  work done by the fluid or on the fluid by external device is 

±hmgdm
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• Gravitational potential energies are given as z1gdm 

and z2gdm and net potential energy is (z1-z2)gdm

• Kinetic energies are               ;                   and net KE 

is 

2

1( / 2)V dm

Derivation of BE using conservation of energy

2

2( / 2)V dm

2 2

1 2( ) / 2)dm V V

2 21 2
2 1 2 1

1 2

( ) ( )
2

m

p p dm
dm h gdm z z gdm V V

 

 
      

 

•Thus, general energy equation is given as

2 2

1 1 2 2
1 2

2 2
L

p V p V
gz gz h

 
     

2 2

1 1 2 2
1 2

2 2
L

p V p V
z z h

w g w g
     
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2

1 1
1

2
constant

p V
z

w g
  

Derivation of BE using conservation of energy

This equation is applicable to the steady flow of an 

incompressible fluid
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Kinetic energy correction factor

• Velocity is assumed to be uniform over the entire cross-section 
in the derivation of BE

• KE at any section can be obtained by integration of KE of all the 
particles over the cross section

• If v is the local velocity through dA (a small area along cross 
section), the mass flow =  ρvdA

• KE of fluid passing through dA = (ρvdA)v2/2

• Total KE possessed by the flowing fluid across entire cross 
section A is

• Convenient way to express KE is with the help of mean velocity 
of flow (V).

3
3

2 2
A A

v w
dA v dA

g
  
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Kinetic energy correction factor
• However, the actual KE is greater than the KE 

computed using mean velocity (V)

• Hence the factor α is introduced such that KE is 

• Thus,

• Mathematically, the cube of average is less than the 

average of cubes i.e.            

3

2
Actual KE = 

w
AV

g


3 3

2 2
A

w w
AV v dA

g g
  

3

3

1

A

v dA
AV

  

3 31

A

V v dA
A

  α is always

greater than 1
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Kinetic energy correction factor

• For turbulent flow α lies between 1.03 to 1.06 which is 

close to 1.

• For laminar flow in pipes it is 2.

• The KE in BE can be introduced as

2 2

1 1 2 2
1 1 2 2
2 2

L

p V p V
z z h

w g w g
      
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Assignment – Prove that for laminar flow α = 2



BE for COMPRESSIBLE FLUID
2

2

dp V
gz C


  
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Isothermal Change
'

 or 
p p

K K
g 

 

2

log
2

e

V
K p gz C  

2
' log

2
e

V
gK p gz C  or

2 2

1 2
1 1 2 2log log

2 2
e e

V V
K p gz K p gz    

2 2
' '1 2

1 1 2 2log log
2 2

e e

V V
gK p gz gK p gz    

Substitute the value of ρ and integrate the pressure term

/  p K 



BE for COMPRESSIBLE FLUID

2 2

2 1
1 2 2 1log ( / ) ( )

2 2
e

V V
K p p g z z   

2 2
' 2 1

1 2 2 1log ( / ) ( )
2 2

e

V V
K p p z z

g g
   
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BE for COMPRESSIBLE FLUID
2

2

dp V
gz C


  

'

1 1;
( )

 or 
k k

p p
C C

g 
 

1 2

1 1;  or 
k kdp dp

C k C k d
d

  
 

  

Adiabatic change k is the exponent of

adiabatic change

' 1 ' 2

1 1;  or 
k k k kdp dp

C g k C g k d
d

  
 

  

1 2

1
( 1) 2

k V
C k gz C

k

 

  


1 2
'

1
( 1) 2

k
k V

C g k gz C
k

 

  

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BE for COMPRESSIBLE FLUID

2

1 2

k p V
gz C

k 
  



Adiabatic change

1 2

1
( 1) 2

k V
C k gz C

k

 

  


1 2
'

1
( 1) 2

k
k V

C g k gz C
k

 

  


C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

2
'

1 2

k p V
z C

k w g
  





Applications of Bernoulli’s Equation

Discharge measurement

 Venturi meter

 Orifice meter

 Nozzle meter

 Rota meter

 Elbow meter

 velocity measurement

 Pitot tube

The other important equation used in these applications 

is continuity equation

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



Venturi Meter
 a device for measuring a flow rate through a pipe

G B Venturi – an Italian Physicist (1797)

Principle – reduction in cross-sectional area of flow passage 

creates pressure difference which enables flow measurement

5°20°

1
2

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Inlet section Convergent cone Throat Divergent cone

Pressure

taps

3



• Convergent cone – angle -21°±1; length 2.7(D-d)

• Throat – length is d, diameter of throat is 1/3  to ¾ of dia of 

pipe

– Diameter of throat is restricted by a cavitation

• Divergent cone – angle – 5° to 15° (preferably 6°)

– length is much larger than convergent   

cone to avoid separation 

• Let a1 and a2 be the cross sectional area of inlet section and

sections at 2, respectively; p1 and p2 be corresponding

pressures; V1 and V2 are respective velocities.

• Bernoulli’s equation between 1 and 2 gives

Venturi Meter

2 2

1 1 2 2
1 2

2 2

p V p V
z z

w g w g
    

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



• If Venturi is horizontal z1 = z2
2 2

1 1 2 2

2 2

p V p V

w g w g
  

Venturi Meter

2 2

1 2 2 1

2 2

p p V V

w w g g
  

1 2p p

w w


Represents difference in pressure heads between inlet 

and throat which is known as Venturi head and denoted 

by h

2 2

2 1

2 2

V V
h

g g
 Therefore,

1 1 2 2thQ aV a V  1 2

1 2

 and th thQ Q
V V

a a
 Continuity equation,

Hence
2 2

2 1

1 1

2

thQ
h

g a a

 
  

 

1 2

2 2

1 2

2
th

a a gh
Q

a a



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• Actual discharge is always less than the theoretical discharge

and hence actual discharge can be estimated by introducing a

factor known as coefficient of discharge (Cd) such that

• Thus,

 or d

th

Q
C K

Q


Coefficient of Discharge for Venturi Meter

1 2

2 2

1 2

2
Q d

a a gh
C

a a




1 2

2 2

1 2

2a a g
C

a a




Constant of 

Venturi meter

dQ C C h

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Value of Cd for Venturi ranges between 0.95 to 0.98



Venturi Meter with U-tube manometer

x
Manometric Liquid

(Specific Gravity - Sm)

1 2( ) mSp p
z x x z

w S w

 
     

 z

Manometric equation

1 2 1mSp p
h x

w w S

 
    

 

Flowing fluid

(Sp. Gr. S

Find the expression for inclined Venturi
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Venturi Meter - Inclined

2 2

1 1 2 2
1 2

2 2

p V p V
z z

w g w g
    

Bernoulli’s Equation between 1 and 2

2 2

1 2 2 1
1 2

2 2

p p V V
z z

w w g g

   
       

   

2 2

2 1

2 2

V V
h

g g
 

1 2

2 2

1 2

2
Q d

a a gh
C

a a




1 2
1 2( ) mSp p

z z y x x
w w S

 
       

 

Manometric equation

1 2
1 2 1mSp p

z z h x
w w S

    
          

     

Thus with any position the h may

be determined by noting x

The vertical position with flow upward is preferred, why



Venturi Meter



1

Orifice Meter

Area a1 Area ao Area
a2

Fluid jet

•Another device for discharge measurement , works on 

same principle

•Cheaper arrangement for discharge measurement

It consists of a circular flat plate with a hole concentric with 

pipe

Thickness is 0.05d, edge flat for 0.02d and beveled for 

0.03d



Orifice Meter

2 2

1 1 2 2
1 2

2 2

p V p V
z z

w g w g
    

Apply Bernoulli’s 

2 2

1 2 2 1

2 2

p p V V

w w g g
  

2 2

2 1

2 2

V V
h

g g
 

Thus,
2 1/ 2

2 1(2 )V gh V 

2 1/ 2

2 1(2 )vV C gh V If the losses are considered Cv is the coefficient 

of velocity

Theoretical velocity

1 1 2 2Q aV a V 

Continuity equation gives

2 c oa C a
The area of jet a2

and area of orifice

ao may be given as

Thus, 1 2
1

o
c

a
V V C

a


1/ 2
2

2 2

2 22
1

o
v c

a
V C gh V C

a

 
  

 



Orifice Meter

Solving for V2 gives 1/ 2

2 2 2 2 2

1

2

1 ( / )
v

v c o

gh
V C

C C a a

 
  

 

2 2 2  and c o c v dQ a V C a V C C C  

 

1/ 2

1/ 2
2 2 2

1

(2 )

1 ( / )

d o

d o

C a gh
Q

C a a




Where Cd is coefficient of 

discharge

Its usual practice to use a simple expression such that 

 

 

1/ 2
2 2

1

1/ 2
2 2 2

1

1 ( / )

1 ( / )

o

d

d o

a a
C C

C a a




    

1/ 2 1/ 2

1

1/ 2 1/ 2
2 2 2 2

1 1

(2 ) (2 )

1 ( / )

o o

o o

Ca gh Ca a gh
Q

a a a a
 

 

This equation has the same form as Venturi meter



Nozzle Meter



Rota Meter
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Sample 

photographs



Elbow Meter

2dQ C A gh
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Pitot Tube

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

1

ho

h

Simple device for velocity

measurement

Principle – if velocity of

flow at a point is reduced to

zero (stagnation point), the

pressure there is increased

due to conversion of KE into

pressure energy

 By measuring this

pressure rise the velocity at a

point can be determined

Bernoulli’s Equation between points 1 and A gives

A

2

2
o o

V
h h h

g
  

ho is the static head and

h is the dynamic head

2V gh
Dynamic pressure head is 

proportional to a square of velocity



Pitot Tube

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

If the losses are considered the velocity is given as

2V C gh
Where C is the coefficient of pitot tube and is 

around 0.98

1

2

h

Pitot tube for circular pipe

2( / / 2 )p w V g( / )p w

2

1 2

2

p pV

w g w
 

1 2p p
h

w w
 

2

2

V
h

g


2V ghThus, 2actV C gh



Pitot Tube

x

y

V1

Manometric equation in mts of water

1 2

1 2( )m

p p
S yS xS y x S S

w w
    

Sm = sp. Gr. of manometric

fluid

S = sp. Gr. Of flowing fluid

1 2 1mSp p
h x

w w S

 
    

 

2 1m
th

S
V gx

S

 
  

 
2 1m

act

S
V C gx

S

 
  

 



Commercial Pitot Tube
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Commercial Pitot Tube
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Flow through Orifices

h

z1

C

C

1

2

An orifice is a an opening having a

closed perimeter made in the wall at

the bottom of the tank or a vessel

containing fluid through which the

fluid may be discharged

This is used for measurement of

discharge through tank
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Classification of orifices

• Size – small, large (beyond 5cm diameter)

• Shape – Circular, rectangular, square and triangular

• Upstream edge – sharp edged, Bell mouthed or with 

round corner 

• Discharge conditions – Free discharging

Submerged

Fully submerged Partially submerged

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



Sharp edged Orifice discharging freely

h

z1

C

C

1

2

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Vena contracta formation

Streamlines in the jet are parallel

therefore the pressure in the jet is

uniform throughout and is equal to

atm pressure

Let the flow through orifice is

steady under the constant head h

Consider the sections 1 and

2; 1 being inside the reservoir

And 2 being at the center of

jet at vena contracta



Sharp edged Orifice discharging freely

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

2 2

1 1 2 2
1 0

2 2

p V p V
z

w g w g
    

Apply BE between 1 and 2

V1 is the velocity of

approach as the fluid

approaches the orifice

with this velocity

1 1 2( ) and a ap p w h z p p   

Due to hydrostatic conditions

Thus, 2 2

1 1 2
1

( )

2 2

a ap w h z pV V
z

w g w g

 
   

2 2

2 1

2 2

V V
h

g g
 

1 1 2cQ aV a V Continuity Equation
2 2

2 1 2V V gh 



2
2 2

2 22

1

2ca
V V gh

a
 

2 2

1

2

1 ( / )c

gh
V

a a




Sharp edged Orifice discharging freely

2 2V gh

V1 can be assumed to be very small compared to V2 

Torricelli’s formula

2vV C gh Where v

th

V
C

V
 Varies between 0.95 –0.99

Coefficient of contraction may be defined as 
c

c

a
C

a
 a is area of orifice

ac is area at VC
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Sharp edged Orifice discharging freely

For bell mouthed orifice Cc = 1 a
d

th

Q
C

Q


( ) 2a c c vQ a V C a C gh  

2thQ a gh

2

2

c va
d

th

C a C ghQ
C

Q a gh


 


d c vC C C

Thus, 2act dQ C a gh
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H2

dh 

h 

H1

d dc

b

bc

H
Hc

Flow through Large Rectangular Orifice

2v cdQ C gh b dh 
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/ 2

1/ 2

( / 2)

2
c c

c c

H d

v c

H d

Q C b g h dh





  

Flow through Large Rectangular Orifice

3/ 2 3/ 2
2

2
3 2 2

c c
v c c c

d d
Q C b g H H

     
        

     

3/ 2 3/ 2
2

2
3 2 2

c v

d d
Q C C b g H H

     
        

     

Hc, bc or dc are difficult to determine

3/ 2 3/ 2
2

2
3 2 2

d

d d
Q C b g H H

     
        

     

 3/ 2 3/ 2

2 1

2
2

3
dQ C b g H H  

In terms of H1 and H2

For large orifice 2dQ C bd gH C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA



 3/ 2 2 3/ 2 2

2 1 1 1

2
2 ( / 2) ( / 2)

3
dQ C b g H V H V    

Flow through Large Rectangular Orifice

If velocity of approach is considered



Flow through Large Circular Orifice

H Hc

d

dc

dx

x

 2 22 ( / 2)Area of strip = cd x dx 

2 ( )Vel. of flow through strip = v cC g H x



Flow through Large Circular Orifice

 2 22 ( ) 2 ( / 2) v c cdQ C g H x d x dx   Discharge through strip

1/ 2 3/ 2 2 5/ 2 3
1/ 2 1/ 2( ) ........

2 8 16

c c c
c c

H x H x H x
H x H

  

      using binominal theorem

1/ 2 3/ 2 2 5/ 2 3
1/ 2 1/ 22 2 ( ) ........

2 8 16
 c c c

v c c

H x H x H x
dQ C g H x H dx

   
       

 
Thus,

2 2 4

2 4
2 1 ........

4 128 1638
 c c c

v

c c

d d d
Q C gH

H H

  
    

 

On integrating by varying x between (+dc/2) to (-dc/2)

2 2 4

2 4
2 1 ........

4 128 1638
 c v

d d d
Q C C gH

H H

  
    

 

2 2 4

2 4
2 1 ........

4 128 1638
 d

d d d
Q C gH

H H

  
    

 



Flow through Large Circular Orifice

2

2
4

 d

d
Q C gH




For small orifice the quantity in bracket is less than unity 

and the actual discharge can be given by



h
C

C

x

y

Determination of Cv of freely discharging Orifice

V

21

2
 and x Vt y gt 

2

2

1

2
 

x
y g

V


2

2
 

gx
V

y


v

th

V
C

V


2 2/ 2

42
v

gx y x
C

hygh
 



H1

z1

1

2

z2

H2

H

Totally submerged orifice

2 2

1 1 2 2
1 2

2 2

p V p V
z z

w g w g
    

1 2
1 2 1 2 and 

p p
H z z H

w w
   

If V1 is negligible

2 1 22 ( )V g H H 

1 22 ( )dQ C a g H H 
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2dQ C a gH



Partially submerged orifice

H1

H2 H
1 2Q Q Q 

Total discharge = Discharge of submerged part

+Discharge of freely discharging orifice

 3/ 2 3/ 2

1 2 2 1

2
2 ( ) 2

3
d dQ C b g H H C b H H gH    

 3/ 2 3/ 2

1 1 2

2
2

3
dQ C b g H H  

2 2 1( ) 2dQ C b H H gH 



Notches and Wiers

Va

Nappe or vein

Crest or sill

H

dh h

Notch - An opening provided in

the side of the tank such that

liquid surface in the tank is

below the top edge of the

opening

Notches made up of metallic

plates are provided in narrow

channels to measure the rate of

flow

Weir – Concrete or masonry

structure built across the river to

raise the level of water on the

upstream side and allow the

excess water to flow over the

entire length to the downstream

side

Similar to small dam
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Z (height of crest)

Z



Notches and Wiers
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Classification of Notches and Wiers

Notches
According to shape – Rectangular, triangular, trapezoidal, parabolic 

and stepped

According to effect of sides on nappe –

1. Notch with end contraction  2. Notch without end contraction or 

suppressed notch

Wiers
According to shape – Rectangular, triangular, trapezoidal

According to shape of crest – Sharp crested weir, narrow crested weir

broad crested, ogee shaped

According to effect of sides on nappe –

1. Notch with end contraction  2. Notch without end contraction or 

suppressed notch
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Flow over Rectangular Sharp Crested Weir or 

Notch

Va

Nappe or vein

Crest or sill

H

dh h

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

L

H

Consider the elemental strip of

thickness dh at a distance of h from

free surface

Area of strip = L dh

2Velocity of fluid = gh

2= ddQ C L dh gh  

0

2= 

H

dQ C L dh gh  

3/ 22
2

3
= dQ C L g H  



Flow over Rectangular Sharp Crested Weir 

or Notch

If velocity of approach = Va , the corresponding head is given as

2

2
= a

a

V
h

g

The limits of integration will be ha to H+ha

Thus
2= 

a

a

H h

d

h

Q C L gh dh



  

3/ 2 3/ 22
2 ( )

3
= d a aQ C L g H h h      

H+ha is known as still water head

The above equation is applicable to suppressed weir or notch for 

which crest length is equal to the width of channel
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Notch with end contraction

End contraction - reduces effective crest length –

contraction of nappe – less discharge

n = 0
n = 1

n = 2 n = 4

Experimental observation –

Reduction in crest length

depends upon H and for each

contraction it is 0.1H

Thus, 0.1Effective crest length of crest = L H
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Notch with end contraction

3/ 22
2 ( 0.1 )

3
=  - without d aQ C g L H H V   

3/ 2 3/ 2

1 1

2
2 ( 0.1 ) ( )

3
=  - with d a aQ C g L H H h V      

Where, 2

1 ( ) ( / 2 )a aH H h H V g   

Mean value of velocity of approach, Va is given as

( )
=  a

Q
V

B H Z
for the case with end contraction

( )
=  a

Q
V

L H Z for the case of suppressed weir or notch
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Triangular Notch

H

θ

h

dh

x
Triangular notch is

preferred over rectangular for

low discharges

The crest length in

triangular notch is zero which

gives fairly large head for the

same discharge as compared

to rectangular notch.

2( ) 2
= tan  

x

H h




2( )

2
= tan  x H h




2( )
2

Area of strip = tan  xdh H h dh


  2Velocity =  gH

Therefore
2( ) 2

2
tan  dQ H h dh gh


 

0

2( ) 2
2

tan  

H

dQ C H h gH dh


 
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Triangular Notch

Hence
1/ 2

0

2 2 tan ( )
2

H

dQ C g H h h dh


 

3/ 2 5/ 2

0

2 2
2 2 tan

2 3 5

H

dQ C g Hh h
  

  
 

5/ 28
2 tan

15 2
dQ C g H




For θ = 90°
5/ 28

2
15

dQ C gH If Cd is assumed to be 0.6 5/ 21.418Q H

If velocity of approach is considered

5/ 2 5/ 28
2 tan ( )

15 2
d a aQ C g H h h


    

where,
2

2
= a

a

V
h

g



Navier-Stokes Equation

2 2 2

2 2 2

1u dp

t dx

u u u
u v

u u u

z zx x y
w

y 



   

  
  


   

 

  
 

  

Unsteady term Convective terms Pressure term

X-momentum equation

viscous term

for laminar flow of an incompressible flow

2 2 2

2 2 2

1v dp

t dy

v v v
u v

v v v

x zz y
w

x y






   
  

  


   

 

  
 

  
Y- momentum

Z - momentum 2 2 2

2 2 2

1w dp

t dz

w w w
u v

w w w

z zx x y
w

y 





   
  

  


   

 

  
 

  

Vector form or coordinate 

free form of N-S equation
21

.
V

V V p
t

V





     


Complete N-S 

Equation



A note on Navier-Stokes Equation

• The N-S equation is used for analyzing the
laminar flow

• There is a viscous term in N-S equation apart
from the terms in Euler equation

• The viscous term represents the shear forces
acting on the fluid particle

• Analytical solution of this equation for 2D and 3D
is not possible

• Obtaining the numerical solution of this equation
in combination with continuity equation is an
important aspect of computational fluid dynamics



Static, Dynamic and Stagnation Pressure

2

2
 Constant

p V
z

w g
  

2

2
 Constant

p V
gz


  

2

2
 Constant

V
p gz   

Each term in the above equation has pressure units and thus 

each term represents some kind of pressure

 p is the static pressure; it represents the actual thermodynamic 

pressure

 is the dynamic pressure; it represents the pressure rise when 

the fluid in motion is brought to rest isentropically

 ρgz is the hydrostatic pressure; it accounts for elevation effects

2 / 2V

2

2

V
p  represents the stagnation pressure



Diagrammatic Representation of static,

dynamic and stagnation pressure
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Pitot tube for circular pipe

2

2

V
p 

Static 

pressure, p

Dynamic 

pressure ρV2/2

Stagnation pressure



PROBLEM 1
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Calculate the kinetic energy correction factor α for the 

following velocity distributions in a circular pipe of radius 

r0.

1.                               

2. 

1
m o

u r

u r

 
  
 

21 ( / )o

m

u
r r

u
   



PROBLEM 2
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215 liters of gasoline (specific gravity 0.82) flow per

second upward in an inclined Venturi meter fitted to a

300 mm diameter pipe. The Venturi meter is inclined at

60° to the vertical and its 150 mm diameter throat is 1.2

m from the entrance along its length. Pressure gages

inserted at the entrance and throat show pressures of

0.141 N/mm2 and 0.077 N/mm2 respectively. Calculate

the discharge coefficient of the Venturi meter.

If instead of pressure gages the entrance and throat are

connected to the two limb U-tube mercury manometer,

determine its reading in mm of differential mercury

column.

7.10



The pressure leads from a Pitot-tube mounted on an air

craft are connected to a pressure gage in the cockpit. The

dial of the pressure gage is calibrated to read the speed in

m/s.

The calibration is done on the ground by applying a known

pressure across the gage and calculating the equivalent

velocity using incompressible Bernoulli’s equation and

assuming that the density is 1.224 kg/m3

The gage having been calibrated in this way the air craft is

flown at 9200 m, where the density is 0.454 kg/m3 and

ambient pressure is 30000 N/m2. The gage indicates the

velocity of 152 m/s. What is the true speed of the air craft?

PROBLEM 3
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