Fluid Dynamics

- The study of fluid mechanics in which the forces and energies are considered along with the motion.
- Types of forces -
\checkmark Body forces - proportional to volume or weight e.g. centrifugal, magnetic, gravity etc.
\checkmark Surface forces - proportional to area e.g. pressure, shear or tangential forces
\checkmark Line forces - proportional to length e.g. surface tension
- Similar to solid mechanics fluid dynamics is also governed by Newton's second law of motion.

Newton's Second law and Fluid

- Resultant force on any fluid element must be equal to the product of mass and the acceleration the element in the same direction

Force per unit volume

$\sum f=\rho a$
$\sum f_{x}=\rho a_{x}$
$\sum f_{\nu}=\rho a$,
$\sum f_{z}=\rho a_{s}$
a is the acceleration of fluid particle, F is the total force acting on fluid particle and ρ is the mass density; x, y and z indicate the suffix for the components along respective directions

- Gravity Force $\mathrm{F}_{\mathrm{g}}=\mathrm{Mg}$ - Pressure Force, F_{p}
- Viscous force, F_{v}
- Turbulent Force, F_{t}
- Surface Tension, F_{s}
- Compressibility

Force, F_{e}

$$
M a=F_{g}+F_{p}+F_{v}+F_{t}+F_{s}+F_{e}
$$

$$
M a_{x}=F_{g x}+F_{p} x+F_{v x}+F_{t x}+F_{s x}+F_{e x}
$$

$$
M a_{y}=F_{g x y}+F_{p y}+F_{v y}+F_{t y}+F_{s y}+F_{e y}
$$

$$
M a_{z}=F_{g z}+F_{p z}+F_{v z}+F_{t z}+F_{s z}+F_{e z}
$$

Reynolds Equations of fluid motion

For fluid in motion the forces due to surface tension and the compressibility effects are negligible

$$
\begin{aligned}
& M a=F_{g}+F_{p}+F_{v}+F_{t} \\
& M a_{x}=F_{g x}+F_{p} x+F_{v x}+F_{t x} \\
& M a_{y}=F_{g x y}+F_{p y}+F_{v y}+F_{t y} \\
& M a_{z}=F_{g z}+F_{p z}+F_{v z}+F_{t z}
\end{aligned}
$$

These equations are useful for the analysis of turbulent flow

Navier-Stokes Equations

For laminar or viscous flow the forces due to turbulence are negligible

$$
\begin{aligned}
& M a=F_{g}+F_{p}+F_{v} \\
& M a_{x}=F_{g x}+F_{p} x+F_{v x} \\
& M a_{y}=F_{g x y}+F_{p y}+F_{v y} \\
& M a_{z}=F_{g z}+F_{p z}+F_{v z}
\end{aligned}
$$

These equations are useful for the analysis of laminar flow

Euler's Equations for fluid flow

For ideal fluid flow the viscous forces are negligible

$$
\begin{gathered}
M a=F_{g}+F_{p} \\
M a_{x}=F_{g x}+F_{p} x \\
M a_{y}=F_{g x y}+F_{p y} \\
M a_{z}=F_{g z}+F_{p z}
\end{gathered}
$$

The Euler's equation is comprised of only body and surface forces

These equations are useful if the viscosity of the fluid is negligible or insignificant.

Derivation of Euler's Equation

Derivation of Euler's Equation

- Let X, Y and Z be the components of body forces per unit mass at point P
- Mass of parallelepiped = ($\rho \delta x \delta y \overline{\delta z})$
- Total component of body force in X -dirn $=\mathrm{X}(\rho \delta x \delta y \delta z)$
- Total component of body force in Y-dirn $=\mathrm{Y}(\rho \delta x \delta y \delta z)$
- Total component of body force in Z-dirn = Z ($\rho \delta x \delta y \delta z$)
- Pressure intensity at $P=p$
- Total pressure force acting on PQRS = $\mathrm{p}(\overline{\mathrm{L}} \mathrm{\delta} \mathrm{z})$
- Pressure intensity on P'Q'R'S' = $p+\frac{\partial p}{\partial x} \delta x$

Derivation of Euler's Equation

- Net pressure force in X-dirn

$$
F_{p x}=p \delta y \delta z-\left(p+\frac{\partial p}{\partial x} \delta x\right) \delta y \delta z \quad F_{p x}=-\frac{\partial p}{\partial x} \delta x \delta y \delta z
$$

Similarly,

$$
F_{p y}=-\frac{\partial p}{\partial y} \delta x \delta y \delta z \quad \text { and } \quad F_{p z}=-\frac{\partial p}{\partial z} \delta x \delta y \delta z
$$

Adding body forces and pressure forces in X-direction and equating to the product of mass and acceleration in X direction

$$
X(\rho \delta x \delta y \delta z)-\frac{\partial p}{\partial x} \delta x \delta y \delta z=\rho(\delta x \delta y \delta z) a_{x}-\cdots \mathbf{A}
$$

Derivation of Euler's Equation

- Thus

$$
X-\frac{1}{\rho} \frac{\partial p}{\partial x}=a_{x}
$$

- Similarly,

$$
\begin{aligned}
& Y-\frac{1}{\rho} \frac{\partial p}{\partial y}=a_{y} \\
& Z-\frac{1}{\rho} \frac{\partial p}{\partial z}=a_{z}
\end{aligned}
$$

Where

$$
\begin{gathered}
a_{x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z} \quad a_{y}=\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z} \\
a_{z}=\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}
\end{gathered}
$$

Euler's equations of fluid motion

Derivation of Euler's Equation

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+X \\
& \frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial y}+Y \\
& \frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+Z
\end{aligned}
$$

No assumption that ρ is constant is made in these equations, therefore these are applicable to compressible or incompressible, non-viscous fluid flow in steady as well as unsteady state

Integration of Euler's Equation

Gives energy equation under following assumptions

1. There exists a force potential which is defined as the function whose negative derivative wrt any direction gives the component of body force per unit mass in that direction (Ω). Thus,

$$
X=-\frac{\partial \Omega}{\partial x} \quad Y=-\frac{\partial \Omega}{\partial y} \quad Z=-\frac{\partial \Omega}{\partial z}
$$

2. The flow is irrotational i.e. velocity potential exists or the flow may be rotational but it's steady

Integration of Euler's Equation

When flow is irrotational
-Consider Euler's equation in X-direction

$$
X-\frac{1}{\rho} \frac{\partial p}{\partial x}=\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v\left(\frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right.
$$

-If flow is irrotational $\square \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x} ; \frac{\partial u}{\partial z}=\frac{\partial w}{\partial x}$
-Existence of velocity potential

Therefore, $\quad-\frac{\partial \Omega}{\partial x}-\frac{1}{\rho} \frac{\partial p}{\partial x}=-\frac{\partial^{2} \phi}{\partial x \partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}+w \frac{\partial w}{\partial x}$

Integration of Euler's Equation

Thus,

$$
\frac{\partial}{\partial x}\left[\Omega+\frac{p}{\rho}+\frac{u^{2}+v^{2}+w^{2}}{2}-\frac{\partial \phi}{\partial t}\right]=0
$$

On integrating wrt x

$$
\left[\Omega+\frac{p}{\rho}+\frac{V^{2}}{2}-\frac{\partial \phi}{\partial t}\right]=F_{1}(y, z, t)
$$

Similarly, for Y and Z directions

$$
\begin{aligned}
& {\left[\Omega+\frac{p}{\rho}+\frac{V^{2}}{2}-\frac{\partial \phi}{\partial t}\right]=F_{2}(x, z, t)} \\
& {\left[\Omega+\frac{p}{\rho}+\frac{V^{2}}{2}-\frac{\partial \phi}{\partial t}\right]=F_{3}(x, y, t)}
\end{aligned}
$$

Thus,

$$
F_{1}(y, z, t)=F_{2}(x, z, t)=F_{3}(x, y, t)
$$

Since x, y and z are the independent variables the above equation will hold good only if these variables disappear from functional term and F is only function of t

Integration of Euler's Equation

Therefore,

$$
\left[\Omega+\frac{p}{\rho}+\frac{V^{2}}{2}-\frac{\partial \phi}{\partial t}\right]=F(t)
$$

For steady flow, $\quad\left[\Omega+\frac{p}{\rho}+\frac{V^{2}}{2}\right]=C$
If the body force exerted on the fluid is only due to gravity and if Z axis is so oriented that z is measured in vertical direction with reference to datum then,

$$
-\frac{\partial \Omega}{\partial x}=0 ;-\frac{\partial \Omega}{\partial y}=0 ;-\frac{\partial \Omega}{\partial z}=-g
$$

Since g is the force per unit mass and can be +ve when acting in downward direction

$$
\Omega=g z+C_{1} \quad \text { At } \mathbf{z}=\mathbf{0} \Omega=\mathbf{0}, \text { therefore } \mathbf{C}_{\mathbf{1}}=\mathbf{0}
$$

Therefore,

Integration of Euler's Equation

$$
\begin{array}{ll}
{\left[\frac{p}{\rho}+\frac{V^{2}}{2}+g z\right]=C} & \text { Bernoulli's Equation } \\
{\left[\frac{p}{\rho g}+\frac{V^{2}}{2 g}+z\right]=C} & \begin{array}{l}
\text { - Energy Equation as } \\
\text { each term indicates energy } \\
\text { per unit weight }
\end{array} \\
{\left[\frac{p}{w}+\frac{V^{2}}{2 g}+z\right]=C} & \begin{array}{l}
\text { 口Each term also indicate } \\
\text { the head e.g. pressure, } \\
\text { velocity and potential head }
\end{array}
\end{array}
$$

Thus, the Bernoulli's theorem states that for steady flow of an incompressible fluid the total energy which is the summation of pressure, velocity and potential energy remains constant at any point

Integration of Euler's Equation

$\frac{p}{w} \square$ Pressure head; $\frac{V^{2}}{2 g} \square$ Velocity head or kinetic head;

$Z \quad \square$ Potential head or datum head

Piezometric head

$$
\left[\frac{p_{1}}{w}+\frac{V_{1}^{2}}{2}+z_{1}\right]=\left[\frac{p_{2}}{w}+\frac{V_{2}^{2}}{2}+z_{2}+h_{L}\right]
$$

Integration of Euler's Equation

- When flow is rotational but steady
- Consider an element of stream filament of CSA ठа

Integration of Euler's Equation

- Let S be the body force per unit mass along streamline
- Mass of fluid element = ($\rho \bar{a}$ ठ̄s)
- Total body force along S-direction = S ($\rho \overline{\mathrm{D}} \mathrm{a}$ ठs)
- Total pressure force on left end = pठa
- Total pressure force on right end = [p+(วp/วs) ठs] ठа

$$
F_{p s}=\left[(p \delta a)-\left(p+\frac{\partial p}{\partial s} \delta s\right) \delta a\right]=-\frac{\partial p}{\partial s} \delta s \delta a
$$

Steady flow acceleration $a_{s}=V \frac{\partial V}{\partial s}=\frac{1}{2} \frac{\partial V^{2}}{\partial s}$

Newton's second law of motion

$$
S(\rho \delta s \delta a)-\frac{\partial p}{\partial s} \delta s \delta a=(\rho \delta s \delta a) \frac{1}{2} \frac{\partial V^{2}}{\partial s}
$$

Integration of Euler's Equation

$$
S=-\frac{\partial \Omega}{\partial s}
$$

Therefore,

$$
\frac{\partial \Omega}{\partial s}+\frac{1}{\rho} \frac{\partial p}{\partial s}+\frac{1}{2} \frac{\partial V^{2}}{\partial s}=0
$$

$$
\Omega+\frac{p}{\rho}+\frac{V^{2}}{2}=C
$$

For incompressible flow

Euler's Equation - an important point

If the flow is irrotational then the same Bernoulli's equation is applicable to all the points in the flow field i. e. for all the streamlines the value of constant is same.

DFor rotational flow the Bernoulli's equation is applicable for a particular streamline i. e. the value of constant is different for different streamlines

Bernoulli's Equation- Principle of conservation of energy

Figure:- Free body of flowing fluid occupying a portion of stream tube between two arbitrarily chosen sections 1-1 and 2-2

Derivation of BE using conservation of energy

- The general energy equation
$\left[\begin{array}{l}\text { work done on the fluid } \\ \text { by force during dt }\end{array}\right] \pm\left[\begin{array}{l}\text { Mechanical work } \\ \text { performed on the fluid }\end{array}\right]$
$=\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1^{\prime}-1^{\prime} \text { and } 2^{\prime}-2^{\prime} \text { at } t_{2}\end{array}\right]-\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1-1 \text { and } 2-2 \text { at } t_{2}\end{array}\right]$
- But
$\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1^{\prime}-1^{\prime} \text { and } 2^{\prime}-2^{\prime} \text { at } t_{2}\end{array}\right]=\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1^{\prime}-1^{\prime} \text { and 2-2 at } t_{2}\end{array}\right]+\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 2-2 \text { and } 2^{\prime}-2^{\prime} \text { at } t_{2}\end{array}\right]$
and $\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1-1 \text { and } 2-2 \text { at } t_{1}\end{array}\right]=\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1-1 \text { and } 1^{\prime}-1^{\prime} \text { at } t_{1}\end{array}\right]+\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1^{\prime}-1^{\prime} \text { and } 2-2 \text { at } t_{1}\end{array}\right]$

Derivation of BE using conservation of energy

For steady flow the state of the flowing fluid in the stream tube within the region bounded by sections 1'-1' and 2-2 remains unchanged wrt to time. Thus,
$\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1^{\prime}-1^{\prime} \text { and } 2-2 \text { at } t_{2}\end{array}\right]=\left[\begin{array}{c}\text { Total energy of fluid } \\ \text { between } \\ 1^{\prime}-1^{\prime} \text { and } 2-2 \text { at } t_{1}\end{array}\right]$

Hence the general energy equation for steady flow of fluid is reduced to
$\left[\begin{array}{l}\text { work done on the fluid } \\ \text { by external forces during } \\ \mathbf{d t}\end{array}\right] \pm\left[\begin{array}{l}\text { Mechanical work } \\ \text { performed on the } \\ \text { fluid }\end{array}\right]$
$=\left[\begin{array}{c}\text { Total energy of } \\ \text { fluid between } \\ 2-2 \text { and } 2^{\prime}-2^{\prime} \text { at } \mathbf{t}_{2}\end{array}\right]-\left[\begin{array}{l}\text { Total energy of } \\ \text { fluid between } \\ 1-1 \text { and } 1^{\prime}-1^{\prime} \text { at } t_{1}\end{array}\right]$

Derivation of BE using conservation of energy

- For steady flow the mass flow at sections 1-1 and 2-2 during dt being same
$\left[\begin{array}{c}\text { Fluid mass between } \\ 1-1 \text { and } \mathbf{1}^{\prime}-1^{\prime}\end{array}\right]=\left[\begin{array}{c}\text { Fluid mass between } \\ 2-2 \text { and } \mathbf{2}^{\prime}-2^{\prime}\end{array}\right]$

Work done by pressure force $\left(p_{1} d A_{1}\right)$ on the free body of the fluid in the stream tube during $d t$ is $+\left(p_{1} d A_{1}\right)\left(\mathrm{V}_{1} \mathrm{dt}\right)$

Work done by pressure force $\left(p_{2} d A_{2}\right)$ on the free body of the fluid in the stream tube during dt is $-\left(\mathrm{p}_{2} \mathrm{~d} \mathrm{~A}_{2}\right)\left(\mathrm{V}_{2} \mathrm{dt}\right)$

Net work done performed by pressure forces on the free body of the fluid in the stream tube during dt is $\left[\left(p_{1} \mathrm{dA} A_{1}\right)\left(\mathrm{V}_{1} \mathrm{dt}\right)-\left(\mathrm{p}_{2} \mathrm{~d} \mathrm{~A}_{2}\right)\left(\mathrm{V}_{2} \mathrm{dt}\right)\right]$

Derivation of BE using conservation of energy

If dm is the total mass of fluid flowing across section $1-1$ during dt or if dm is actually the mass of fluid within 1-1 and 1'-1' or between 2-2 and 2'-2', then

$$
\left(V_{1} d A_{1}\right) d t=\frac{d m}{\rho_{1}} ; \text { and }\left(V_{2} d A_{2}\right) d t=\frac{d m}{\rho_{2}}
$$

Thus net work done by pressure forces on the free body of fluid is

$$
\left(\frac{p_{1}}{\rho_{1}}-\frac{p_{2}}{\rho_{2}}\right) d m
$$

Total work done by the fluid or on the fluid by external device is $\pm h_{\mathrm{m}} \mathrm{gdm}$

Derivation of BE using conservation of energy

- Gravitational potential energies are given as $z_{1} g d m$ and $z_{2} \mathrm{gdm}$ and net potential energy is $\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right) \mathrm{gdm}$
- Kinetic energies are $\left(V_{1}^{2} / 2\right) d m$; $\left(V_{2}^{2} / 2\right) d m$ and net KE

$$
\left.d m\left(V_{1}^{2}-V_{2}^{2}\right) / 2\right)
$$

-Thus, general energy equation is given as

$$
\left(\frac{p_{1}}{\rho_{1}}-\frac{p_{2}}{\rho_{2}}\right) d m \pm h_{m} g d m=\left(z_{2}-z_{1}\right) g d m+\frac{d m}{2}\left(V_{2}^{2}-V_{1}^{2}\right)
$$

$$
\begin{aligned}
& \frac{p_{1}}{\rho}+\frac{V_{1}^{2}}{2}+g z_{1}=\frac{p_{2}}{\rho}+\frac{V_{2}^{2}}{2}+g z_{2} \pm h_{L} \\
& \frac{p_{1}}{w}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{w}+\frac{V_{2}^{2}}{2 g}+z_{2} \pm h_{L}
\end{aligned}
$$

Derivation of BE using conservation of energy

This equation is applicable to the steady flow of an incompressible fluid

Kinetic energy correction factor

- Velocity is assumed to be uniform over the entire cross-section in the derivation of BE
- KE at any section can be obtained by integration of KE of all the particles over the cross section
- If v is the local velocity through dA (a small area along cross section), the mass flow = pvdA
- KE of fluid passing through $d A=(\rho v d A) v^{2} / 2$
- Total KE possessed by the flowing fluid across entire cross section A is

- Convenient way to express KE is with the help of mean velocity of flow (V).

Kinetic energy correction factor

- However, the actual KE is greater than the KE computed using mean velocity (V)
- Hence the factor α is introduced such that KE is

$$
\text { Actual KE }=\alpha \frac{w}{2 g} A V^{3}
$$

- Thus,

- Mathematically, the cube of average is less than the average of cubes i.e. $V^{3}<\frac{1}{A} \int v_{A}^{3} d A \longrightarrow \alpha$ is always greater than 1

Kinetic energy correction factor

- For turbulent flow a lies between 1.03 to 1.06 which is close to 1.
- For laminar flow in pipes it is 2 .
- The KE in BE can be introduced as

$$
\frac{p_{1}}{w}+\alpha_{1} \frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{w}+\alpha_{2} \frac{V_{2}^{2}}{2 g}+z_{2}+h_{L}
$$

Assignment - Prove that for laminar flow $\alpha=2$

BE for COMPRESSIBLE FLUID

$$
\int \frac{d p}{\rho}+\frac{V^{2}}{2}+g z=C
$$

Isothermal Change

$$
\rho=p / K
$$

Substitute the value of ρ and integrate the pressure term

$$
\begin{aligned}
& K \log _{e} p+\frac{V^{2}}{2}+g z=C \quad \text { or } \quad g K^{\prime} \log _{e} p+\frac{V^{2}}{2}+g z= \\
& K \log _{e} p_{1}+\frac{V_{1}^{2}}{2}+g z_{1}=K \log _{e} p_{2}+\frac{V_{2}^{2}}{2}+g z_{2} \\
& g K^{\prime} \log _{e} p_{1}+\frac{V_{1}^{2}}{2}+g z_{1}=g K^{\prime} \log _{e} p_{2}+\frac{V_{2}^{2}}{2}+g z_{2}
\end{aligned}
$$

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

BE for COMPRESSIBLE FLUID

$$
K \log _{e}\left(p_{1} / p_{2}\right)=\frac{V_{2}^{2}}{2}-\frac{V_{1}^{2}}{2}+g\left(z_{2}-z_{1}\right)
$$

$$
K^{\prime} \log _{e}\left(p_{1} / p_{2}\right)=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}+\left(z_{2}-z_{1}\right)
$$

BE for COMPRESSIBLE FLUID

$$
\int \frac{d p}{\rho}+\frac{V^{2}}{2}+g z=C
$$

Adiabatic change

$$
\frac{p}{\rho^{k}}=C_{1} ; \text { or } \frac{p}{(\rho g)^{k}}=C_{1}^{\prime}
$$

k is the exponent of adiabatic change

$$
\frac{d p}{d \rho}=C_{1} k \rho^{k-1} ; \text { or } \frac{d p}{\rho}=C_{1} k \rho^{k-2} d \rho
$$

$$
\frac{d p}{d \rho}=C_{1}^{\prime} g^{k} k \rho^{k-1} ; \text { or } \frac{d p}{\rho}=C_{1}^{\prime} g^{k} k \rho^{k-2} d \rho
$$

$$
C_{1} k \frac{\rho^{k-1}}{(k-1)}+\frac{V^{2}}{2}+g z=C
$$

$$
C_{1}^{\prime} g^{k} k \frac{\rho^{k-1}}{(k-1)}+\frac{V^{2}}{2}+g z=C
$$

BE for COMPRESSIBLE FLUID

Adiabatic change

Applications of Bernoulli's Equation

> Discharge measurement

- Venturi meter
- Orifice meter
- Nozzle meter
- Rota meter
- Elbow meter
$>$ velocity measurement
- Pitot tube

The other important equation used in these applications is continuity equation

Venturi Meter

$>$ a device for measuring a flow rate through a pipe
$>$ G B Venturi - an Italian Physicist (1797)
$>$ Principle - reduction in cross-sectional area of flow passage creates pressure difference which enables flow measurement

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Venturi Meter

- Convergent cone - angle $-21^{\circ} \pm 1$; length 2.7 (D-d)
- Throat - length is d, diameter of throat is $1 / 3$ to $3 / 4$ of dia of pipe
- Diameter of throat is restricted by a cavitation
- Divergent cone - angle -5° to 15° (preferably 6°)
- length is much larger than convergent cone to avoid separation
- Let a_{1} and a_{2} be the cross sectional area of inlet section and sections at 2 , respectively; p_{1} and p_{2} be corresponding pressures; V_{1} and V_{2} are respective velocities.
- Bernoulli's equation between 1 and 2 gives

Venturi Meter

- If Venturi is horizontal $\mathrm{z}_{1}=\mathrm{z}_{2}$

$$
\frac{p_{1}}{w}+\frac{V_{1}^{2}}{2 g}=\frac{p_{2}}{w}+\frac{V_{2}^{2}}{2 g} \quad \square \quad \frac{p_{1}}{w}-\frac{p_{2}}{w}=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}
$$

$$
\frac{p_{1}}{w}-\frac{p_{2}}{w}
$$

Represents difference in pressure heads between inlet and throat which is known as Venturi head and denoted by h
Therefore, $\quad h=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}$
Continuity equation,
$Q_{t h}=a_{1} V_{1}=a_{2} V_{2} \square$

$$
V_{1}=\frac{Q_{t h}}{a_{1}} \text { and } V_{2}=\frac{Q_{t h}}{a_{2}}
$$

Hence

$$
h=\frac{Q_{t h}}{2 g}\left[\frac{1}{a_{2}^{2}}-\frac{1}{a_{1}^{2}}\right]
$$

$$
Q_{t h}=\frac{a_{1} a_{2} \sqrt{2 g h}}{\sqrt{a_{1}^{2}-a_{2}^{2}}}
$$

Coefficient of Discharge for Venturi Meter

- Actual discharge is always less than the theoretical discharge and hence actual discharge can be estimated by introducing a factor known as coefficient of discharge $\left(\mathrm{C}_{\mathrm{d}}\right)$ such that

$$
C_{d} \text { or } K=\frac{Q}{Q_{t h}}
$$

- Thus,

$$
\mathbf{Q}=C_{d} \frac{a_{1} a_{2} \sqrt{2 g h}}{\sqrt{a_{1}^{2}-a_{2}^{2}}}
$$

$$
Q=C_{d} C \sqrt{h}
$$

Value of Cd for Venturi ranges between 0.95 to 0.98

Venturi Meter with U-tube manometer

Flowing fluid (Sp. Gr. S

Manometric Liquid
(Specific Gravity - S_{m})

Find the expression for inclined Venturi

Venturi Meter - Inclined

Bernoulli's Equation between 1 and 2

$$
\begin{aligned}
& \frac{p_{1}}{w}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{w}+\frac{V_{2}^{2}}{2 g}+z_{2} \\
& \left(\frac{p_{1}}{w}+z_{1}\right)-\left(\frac{p_{2}}{w}+z_{2}\right)=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g} \\
& h=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g} \longmapsto \mathbf{Q}=C_{d} \frac{a_{1} a_{2} \sqrt{2 g h}}{\sqrt{a_{1}^{2}-a_{2}^{2}}}
\end{aligned}
$$

Manometric equation

$$
\frac{p_{1}}{w}+\left(z_{1}-z_{2}\right)+y+x=\frac{p_{2}}{w}+x\left(\frac{S_{m}}{S}\right)
$$

$$
\left(\frac{p_{1}}{w}+z_{1}\right)-\left(\frac{p_{2}}{w}+z_{2}\right)=h=x\left(\frac{S_{m}}{S}-1\right)
$$

Thus with any position the h may be determined by noting x

The vertical position with flow upward is preferred, why

Venturi Meter

Orifice Meter

-Another device for discharge measurement, works on same principle
-Cheaper arrangement for discharge measurement

Dlt consists of a circular flat plate with a hole concentric with pipe
DThickness is 0.05 d , edge flat for 0.02 d and beveled for 0.03d

Orifice Meter

Apply Bernoulli's

$$
\frac{p_{1}}{w}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{w}+\frac{V_{2}^{2}}{2 g}+z_{2} \square \frac{p_{1}}{w}-\frac{p_{2}}{w}=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}
$$

Thus,

$$
h=\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}
$$

$$
V_{2}=\left(2 g h+V_{1}^{2}\right)^{1 / 2} \square \text { Theoretical velocity }
$$

If the losses are considered

$$
V_{2}=C_{v}\left(2 g h+V_{1}^{2}\right)^{1 / 2}
$$

C_{v} is the coefficient of velocity
Continuity equation gives

$$
Q=a_{1} V_{1}=a_{2} V_{2}
$$

The area of jet a_{2} and area of orifice

$$
a_{2}=C_{c} a_{o}
$$ a_{0} may be given as

Thus,

$$
V_{1}=V_{2} C_{c} \frac{a_{o}}{a 1}
$$

$$
V_{2}=C_{v}\left(2 g h+V_{2}^{2} C_{c}^{2} \frac{a_{o}^{2}}{a 1}\right)^{1 / 2}
$$

Orifice Meter

Solving for V_{2} gives

$$
V_{2}=C_{v}\left\{\frac{2 g h}{1-C_{v}^{2} C_{c}^{2}\left(a_{o}^{2} / a_{1}^{2}\right)}\right\}^{1 / 2}
$$

$$
Q=a_{2} V_{2}=C_{c} a_{o} V_{2} \text { and } C_{c} C_{v}=C_{d}
$$

$$
Q=\frac{C_{d} a_{o}(2 g h)^{1 / 2}}{\left\{1-C_{d}^{2}\left(a_{o}^{2} / a_{1}^{2}\right)\right\}^{1 / 2}}
$$

Where C_{d} is coefficient of discharge

Its usual practice to use a simple expression such that

$$
C=C_{d} \frac{\left\{1-\left(a_{o}^{2} / a_{1}^{2}\right)\right\}^{1 / 2}}{\left\{1-C_{d}^{2}\left(a_{o}^{2} / a_{1}^{2}\right)\right\}^{1 / 2}}
$$

$$
Q=\frac{C a_{o}(2 g h)^{1 / 2}}{\left\{1-\left(a_{o}^{2} / a_{1}^{2}\right)\right\}^{1 / 2}}=\frac{C a_{o} a_{1}(2 g h)^{1 / 2}}{\left\{a_{1}^{2}-a_{o}^{2}\right\}^{1 / 2}}
$$

This equation has the same form as Venturi meter

Nozzle Meter

Rota Meter

Sample photographs

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Elbow Meter

$$
Q=C_{d} A \sqrt{2 g h}
$$

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Pitot Tube

\square Simple device for velocity measurement

DPrinciple - if velocity of flow at a point is reduced to zero (stagnation point), the pressure there is increased due to conversion of KE into pressure energy
\square By measuring this pressure rise the velocity at a point can be determined
Bernoulli's Equation between points 1 and A gives

$$
\begin{array}{cl}
h_{o}+\frac{V^{2}}{2 g}=h_{o}+h \longrightarrow \begin{array}{l}
\mathbf{h}_{\boldsymbol{o}} \text { is the static head and } \\
\mathbf{h} \text { is the dynamic head }
\end{array} \\
V=\sqrt{2 g h} & \begin{array}{l}
\text { Dynamic pressure head is } \\
\text { proportional to a square of velocity }
\end{array}
\end{array}
$$

Pitot Tube

DIf the losses are considered the velocity is given as

$$
\begin{array}{ll}
V=C \sqrt{2 g h} & \begin{array}{l}
\text { Where } \mathbf{C} \text { is the coefficient of pitot tube and is } \\
\text { around } 0.98
\end{array}
\end{array}
$$

$$
\begin{gathered}
\frac{p_{1}}{w}+\frac{V^{2}}{2 g}=\frac{p_{2}}{w} \\
h=\frac{p_{1}}{w}-\frac{p_{2}}{w} \\
h=\frac{V^{2}}{2 g}
\end{gathered}
$$

Thus

$$
V=\sqrt{2 g h} \quad V_{a c t}=C \sqrt{2 g h}
$$

Pitot Tube

Commercial Pitot Tube

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Commercial Pitot Tube

Flow through Orifices

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Classification of orifices

- Size - small, large (beyond 5cm diameter)
- Shape - Circular, rectangular, square and triangular
- Upstream edge - sharp edged, Bell mouthed or with round corner
- Discharge conditions - Free discharging

Submerged

Fully submerged
Partially submerged

Sharp edged Orifice discharging freely

Consider the sections 1 and 2; 1 being inside the reservoir And 2 being at the center of jet at vena contracta

Sharp edged Orifice discharging freely

Apply BE between 1 and 2

$$
\frac{p_{1}}{w}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{w}+\frac{V_{2}^{2}}{2 g}+0
$$

V1 is the velocity of approach as the fluid approaches the orifice with this velocity

Due to hydrostatic conditions

$$
p_{1}=p_{a}+w\left(h-z_{1}\right) \text { and } p_{2}=p_{a}
$$

Thus,

$$
\frac{p_{a}+w\left(h-z_{1}\right)}{w}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{a}}{w}+\frac{V_{2}^{2}}{2 g} \quad \square \frac{V_{2}^{2}}{2 g}=\frac{V_{1}^{2}}{2 g}+h
$$

Continuity Equation $Q=a_{1} V_{1}=a_{c} V_{2}$

$$
V_{2}^{2}=V_{1}^{2}+2 g h
$$

Sharp edged Orifice discharging freely

$$
V_{2}^{2}=\frac{a_{c}^{2}}{a_{1}^{2}} V_{2}^{2}+2 g h \quad V_{2}=\sqrt{\frac{2 g h}{1-\left(a_{c} / a_{1}\right)^{2}}}
$$

V_{1} can be assumed to be very small compared to V_{2}

$$
V_{2}=\sqrt{2 g h}-\text { Torricelli's formula }
$$

$$
V=C_{v} \sqrt{2 g h} \quad \text { Where } \quad C_{v}=\frac{V}{V_{t h}} \quad \text { Varies between } 0.95-0.99
$$

Sharp edged Orifice discharging freely

For bell mouthed orifice $\mathrm{C}_{\mathrm{c}}=1 \quad C_{d}=\frac{Q_{a}}{Q_{t h}}$

$$
\begin{gathered}
Q_{a}=\left(a_{c} V\right)=C_{c} a \times C_{v} \sqrt{2 g h} \\
Q_{t h}=a \sqrt{2 g h} \\
C_{d}=\frac{Q_{a}}{Q_{t h}}=\frac{C_{c} a \times C_{v} \sqrt{2 g h}}{a \times \sqrt{2 g h}} \square C_{d}=C_{c} C_{v}
\end{gathered}
$$

Thus, $Q_{a c t}=C_{d} a \sqrt{2 g h}$

Flow through Large Rectangular Orifice

Flow through Large Rectangular Orifice

$$
\begin{gathered}
Q=C_{v} b_{c} \sqrt{2 g} \times \int_{\left(H_{c}-d_{c} / 2\right)}^{H_{c}+d_{c} / 2} h^{1 / 2} d h \\
Q=\frac{2}{3} C_{v} b_{c} \sqrt{2 g} \times\left\{\left(H_{c}+\frac{d_{c}}{2}\right)^{3 / 2}-\left(H_{c}-\frac{d_{c}}{2}\right)^{3 / 2}\right\}
\end{gathered}
$$

H_{c}, b_{c} or d_{c} are difficult to determine

$$
\begin{aligned}
& Q=\frac{2}{3} C_{c} C_{v} b \sqrt{2 g} \times\left\{\left(H+\frac{d}{2}\right)^{3 / 2}-\left(H-\frac{d}{2}\right)^{3 / 2}\right\} \\
& Q=\frac{2}{3} C_{d} b \sqrt{2 g} \times\left\{\left(H+\frac{d}{2}\right)^{3 / 2}-\left(H-\frac{d}{2}\right)^{3 / 2}\right\}
\end{aligned}
$$

In terms of $\mathrm{H}_{\mathbf{1}}$ and $\mathrm{H}_{\mathbf{2}}$

$$
Q=\frac{2}{3} C_{d} b \sqrt{2 g} \times\left\{H_{2}^{3 / 2}-H_{1}^{3 / 2}\right\}
$$

For large orifice

$$
Q=C_{d} b d \sqrt{2 g} H
$$

Flow through Large Rectangular Orifice

If velocity of approach is considered

$$
Q=\frac{2}{3} C_{d} b \sqrt{2 g} \times\left\{\left(H_{2}^{3 / 2}+V_{1}^{2} / 2\right)-\left(H_{1}^{3 / 2}+V_{1}^{2} / 2\right)\right\}
$$

Flow through Large Circular Orifice

Area of strip $=\left\{2 \sqrt{\left(d_{c} / 2\right)^{2}-x^{2}}\right\} \times d x$
Vel. of flow through strip $=C_{v} \sqrt{2 g\left(H_{c}-x\right)}$

Flow through Large Circular Orifice

Discharge through strip $\quad d Q=C_{v} \sqrt{2 g\left(H_{c}-x\right)}\left\{2 \sqrt{\left(d_{c} / 2\right)^{2}-x^{2}}\right\} \times d x$

$$
\left(H_{c}-x\right)^{1 / 2}=H_{c}^{1 / 2}-\frac{H_{c}^{-1 / 2} x}{2}-\frac{H_{c}^{-3 / 2} x^{2}}{8}-\frac{H_{c}^{-5 / 2} x^{3}}{16}-\ldots \text { using binominal theorem }
$$

Thus, $\quad d Q=2 C_{v} \sqrt{2 g}\left[\left(H_{c}-x\right)^{1 / 2}=H_{c}^{1 / 2}-\frac{H_{c}^{-1 / 2} x}{2}-\frac{H_{c}^{-3 / 2} x^{2}}{8}-\frac{H_{c}^{-5 / 2} x^{3}}{16}-\ldots\right] d x$
On integrating by varying x between $\left(+d_{c} / 2\right)$ to $\left(-d_{c} / 2\right)$

$$
\begin{aligned}
& Q=C_{v} \frac{\pi d_{c}^{2}}{4} \sqrt{2 g H}\left[1-\frac{d_{c}^{2}}{128 H_{c}^{2}}-\frac{d_{c}^{4}}{1638 H_{c}^{4}}-\ldots\right] \\
& Q=C_{c} C_{v} \frac{\pi d^{2}}{4} \sqrt{2 g H}\left[1-\frac{d^{2}}{128 H^{2}}-\frac{d^{4}}{1638 H^{4}}-\ldots\right] \\
& Q=C_{d} \frac{\pi d^{2}}{4} \sqrt{2 g H}\left[1-\frac{d^{2}}{128 H^{2}}-\frac{d^{4}}{1638 H^{4}}-\ldots\right]
\end{aligned}
$$

Flow through Large Circular Orifice

For small orifice the quantity in bracket is less than unity and the actual discharge can be given by

$$
Q=C_{d} \frac{\pi d^{2}}{4} \sqrt{2 g H}
$$

Determination of C_{v} of freely discharging Orifice

Totally submerged orifice

$$
Q=C_{d} a \sqrt{2 g H}
$$

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Partially submerged orifice

Notches and Wiers

V Notch Weir
C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Classification of Notches and Wiers

Notches

\square According to shape - Rectangular, triangular, trapezoidal, parabolic and stepped
-According to effect of sides on nappe -

1. Notch with end contraction 2. Notch without end contraction or suppressed notch

Wiers

\square According to shape - Rectangular, triangular, trapezoidal
\square According to shape of crest - Sharp crested weir, narrow crested weir broad crested, ogee shaped
-According to effect of sides on nappe -

1. Notch with end contraction 2. Notch without end contraction or suppressed notch

Flow over Rectangular Sharp Crested Weir or Notch

Nappe or vein
Consider the elemental strip of thickness dh at a distance of h from free surface

Area of strip $=L \times d h$

$$
\begin{gathered}
\text { Velocity of fluid }=\sqrt{2 g h} \\
d Q=C_{d} \times L \times d h \times \sqrt{2 g h} \\
Q=\int_{0}^{H} C_{d} \times L \times d h \times \sqrt{2 g h} \\
Q=\frac{2}{3} C_{d} \times L \times \sqrt{2 g} \times H^{3 / 2}
\end{gathered}
$$

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

If velocity of approach $=\mathrm{V}_{\mathrm{a}}$, the corresponding head is given as

$$
h_{a}=\frac{V_{a}^{2}}{2 g}
$$

The limits of integration will be h_{a} to $\mathrm{H}_{+} \mathrm{h}_{\mathrm{a}}$
Thus

$$
\begin{gathered}
Q=\int_{h_{a}}^{H+h_{a}} C_{d} \times L \times \sqrt{2 g h} \times d h \\
Q=\frac{2}{3} C_{d} \times L \times \sqrt{2 g} \times\left[\left(H+h_{a}\right)^{3 / 2}-h_{a}^{3 / 2}\right]
\end{gathered}
$$

$\mathrm{H}+\mathrm{h}_{\mathrm{a}}$ is known as still water head
The above equation is applicable to suppressed weir or notch for which crest length is equal to the width of channel

Notch with end contraction

End contraction - reduces effective crest length contraction of nappe - less discharge

Experimental observation Reduction in crest length depends upon H and for each contraction it is 0.1 H

$$
n=2
$$

$\mathrm{n}=4$

Thus, \quad Effective crest length of crest $=L-0.1 H$
C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Notch with end contraction

$$
Q=\frac{2}{3} C_{d} \times \sqrt{2 g} \times(L-0.1 H) \times H^{3 / 2}-\text { without } V_{a}
$$

$$
Q=\frac{2}{3} C_{d} \times \sqrt{2 g} \times\left(L-0.1 H_{1}\right) \times\left[\left(H_{1}\right)^{3 / 2}-h_{a}^{3 / 2}\right]-\text { with } V_{a}
$$

Where,

$$
H_{1}=\left(H+h_{a}\right)=\left(H+V_{a}^{2} / 2 g\right)
$$

>Mean value of velocity of approach, Va is given as

$$
\begin{array}{ll}
V_{a}=\frac{Q}{B(H+Z)} & \text { for the case with end contraction } \\
V_{a}=\frac{Q}{L(H+Z)} & \text { for the case of suppressed weir or notch }
\end{array}
$$

Triangular Notch

Triangular notch is preferred over rectangular for low discharges
aThe crest length in triangular notch is zero which gives fairly large head for the same discharge as compared to rectangular notch.

$$
\frac{x}{2(H-h)}=\boldsymbol{\operatorname { t a n }} \frac{\theta}{2} \quad \square x=2(H-h) \tan \frac{\theta}{2}
$$

Area of strip $=x d h=2(H-h) \tan \frac{\theta}{2} d h \quad$ Velocity $=\sqrt{2 g H}$
Therefore

$$
d Q=2(H-h) \boldsymbol{\operatorname { t a n }} \frac{\theta}{2} d h \sqrt{2 g h} \square Q=C_{d} \int_{0}^{H} 2(H-h) \tan \frac{\theta}{2} \sqrt{2 g H} d h
$$

Triangular Notch

Hence

$$
\begin{aligned}
& Q=2 C_{d} \sqrt{2 g} \tan \frac{\theta}{2} \int_{0}^{H}(H-h) h^{1 / 2} d h \\
& Q=2 C_{d} \sqrt{2 g} \tan \frac{\theta}{2}\left[\frac{2}{3} H h^{3 / 2}-\frac{2}{5} h^{5 / 2}\right]_{0}^{H} \\
& Q=\frac{8}{15} C_{d} \sqrt{2 g} \tan \frac{\theta}{2} H^{5 / 2}
\end{aligned}
$$

For $\theta=90^{\circ} Q=\frac{8}{15} C_{d} \sqrt{2 g} H^{5 / 2}$
If \mathbf{C}_{d} is assumed to be $0.6 \quad Q=1.418 H^{5 / 2}$

If velocity of approach is considered

$$
Q=\frac{8}{15} C_{d} \sqrt{2 g} \tan \frac{\theta}{2}\left[\left(H+h_{a}\right)^{5 / 2}-h_{a}^{5 / 2}\right] \quad \text { where, } h_{a}=\frac{V_{a}^{2}}{2 g}
$$

Navier-Stokes Equation

X-momentum equation for laminar flow of an incompressible flow
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho} \frac{d p}{d x}+\mu / \rho\left[\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right]$

Unsteady term Convective terms
Pressure term
viscous term
Y- momentu $\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=-\frac{1}{\rho} \frac{d p}{d y}+u / \rho\left[\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right]$
\mathbf{Z} - momentu $\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho} \frac{d p}{d z}+\frac{\mu}{\rho}\left[\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right]$
$\begin{aligned} & \text { Vector form or coordinate } \\ & \text { free form of N-S equation }\end{aligned} \frac{\partial V}{\partial t}+V . \nabla V=-\frac{1}{\rho} \nabla p+\mu / \rho \nabla^{2} V$
Complete N-S Equation

A note on Navier-Stokes Equation

- The N-S equation is used for analyzing the laminar flow
- There is a viscous term in N-S equation apart from the terms in Euler equation
- The viscous term represents the shear forces acting on the fluid particle
- Analytical solution of this equation for 2D and 3D is not possible
- Obtaining the numerical solution of this equation in combination with continuity equation is an important aspect of computational fluid dynamics

Static, Dynamic and Stagnation Pressure

$$
\begin{gathered}
\frac{p}{w}+\frac{V^{2}}{2 g}+z=\text { Constant } \\
p+\rho \frac{V^{2}}{2}+\rho g z=\text { Constant }
\end{gathered}
$$

Each term in the above equation has pressure units and thus each term represents some kind of pressure
$>p$ is the static pressure; it represents the actual thermodynamic pressure
$>\rho V^{2} / 2$ is the dynamic pressure; it represents the pressure rise when the fluid in motion is brought to rest isentropically
$>\rho g z$ is the hydrostatic pressure; it accounts for elevation effects
$p+\rho \frac{V^{2}}{2} \quad$ represents the stagnation pressure

Diagrammatic Representation of static, dynamic and stagnation pressure

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

PROBLEM 1

Calculate the kinetic energy correction factor a for the following velocity distributions in a circular pipe of radius
r_{0}.

$$
\text { 1. } \frac{u}{u_{m}}=\left(1-\frac{r}{r_{o}}\right)
$$

2. $\frac{u}{u_{m}}=\left[1-\left(r / r_{o}\right)^{2}\right]$

215 liters of gasoline (specific gravity 0.82) flow per second upward in an inclined Venturi meter fitted to a 300 mm diameter pipe. The Venturi meter is inclined at 60° to the vertical and its 150 mm diameter throat is 1.2 m from the entrance along its length. Pressure gages inserted at the entrance and throat show pressures of $0.141 \mathrm{~N} / \mathrm{mm}^{2}$ and $0.077 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Calculate the discharge coefficient of the Venturi meter.
If instead of pressure gages the entrance and throat are connected to the two limb U-tube mercury manometer, determine its reading in mm of differential mercury column.

The pressure leads from a Pitot-tube mounted on an air craft are connected to a pressure gage in the cockpit. The dial of the pressure gage is calibrated to read the speed in m / s.
The calibration is done on the ground by applying a known pressure across the gage and calculating the equivalent velocity using incompressible Bernoulli's equation and assuming that the density is $1.224 \mathrm{~kg} / \mathrm{m}^{3}$ The gage having been calibrated in this way the air craft is flown at 9200 m , where the density is $0.454 \mathrm{~kg} / \mathrm{m}^{3}$ and ambient pressure is $30000 \mathrm{~N} / \mathrm{m}^{2}$. The gage indicates the velocity of $152 \mathrm{~m} / \mathrm{s}$. What is the true speed of the air craft?

