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Fluid Statics
Fluid Pressure or pressure intensity,

Force always acts in the direction 

normal to the wall

 SI unit – N/m2 or Pascal 

/p dF dA /p F A
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Fluid Pressure and Its Measurement

Y
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Thus the pressure intensity varies only in the vertical direction in the 

static mass of fluid and it increases with the depth of the fluid



Pressure at a point in a liquid
Free liquid surface

h

zo

z = (H+zo-h)

dp
w

dz
  p wz C  

For free surface pressure

is atmospheric, pa

z = (H+zo)

Hence C = [pa +w(H+zo)

We know 

[ ( )]a op wz p w H z    

For point in liquid ( )oz H z h   Thus,
ap p wh 

If atmospheric pressure is considered as datum p wh

1 1 2 2p w h w h  1 1 2 2S h S h
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Pressure head
The vertical height of the free surface above any point in a liquid 

at rest is known as pressure head. Thus,

p
h

w

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It is a convenient to express the pressure in terms of vertical

height of the liquid since the pressure depends on only vertical

height

Thus pressure can be expressed in meters of liquid column

The equation p = wh can be used to obtain the relationship

between heights of columns of different liquids for same pressure

1 1 2 2p w h w h 
1 1 2 2S h S h

1 1 2 2wS h wS h

Where, w is the specific weight of water and S1 and S2 are 

the specific gravities of two different fluids



Pascal’s Law

 Pressure at a point in a fluid acts with same magnitude in all the 

directions
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Pascal’s Law

s x zp p p 

 Resolving the forces along X and Z direction and equating with zero 

gives:

Which means pressure acts equally in all directions as S direction is 

arbitrarily chosen. This is known as Pascal’s law
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Atmospheric, absolute, gage and vacuum 

pressure
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Atmospheric air exerts normal pressure up on all the

surfaces with which it is in contact and it is known as

atmospheric pressure (Varies with altitude, measured by

barometer and hence called barometric pressure)

At sea level – 10.1043  104 N/m2 or 1.01043 bar or 10.3 m

of water or 76 cm of Hg.

Absolute zero or local atmospheric pressure can be the

base for measurement

If measured with reference to atm pressure it is called

gage pressure (Negative gage pressure is vacuum)

If measured with respect to absolute zero it is called

absolute pressure



Atmospheric, absolute, gage and vacuum 

pressure
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Absolute

pressure

Atmospheric pressure

Gage

pressure

Atmospheric

pressure
Absolute

pressure

Vacuum pressure

or

Negative gage pressure

Absolute zero pressure or datum



Pressure Measurement

Manometers Mechanical gauges

Simple Manometers Differential Manometers

 Piezometers

 U-tube manometers

 Single column 

manometers

 Inclined single column 

manometers
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 Two piezometer manometer

 Inverted U-tube manometers

 U-Tube manometers

 Micro manometers



Piezometers –simplest manometers
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h

Negative pressure

measurement 

hm

m

hm

Can measure only moderate 

pressures

Location of insertion makes no 

difference

Can not be used for gases (no 

free surfaces are formed)



U-Tube manometers

Fluid of sp. 

Gr. S1

y

z

A

Manometric fluid

(Sp. Gr. S2)
 A glass U-tube with heavier

manometric fluid is used

Procedure to write manometric 

expression

Start from A or free surface and

write pressure there in appropriate

unit (N/m2 or m of H2O)

Add the change in pressure

caused due to change from one

level to adjacent level.

Use +ve if the adjacent level is

lower.

Use –ve sign if it is higher.

Continue till other end and equate

with pressure at that point
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 Manometric expression in terms of liquid at A
2

1 1

0AP S
z y

wS S
  

 Manometric expression in terms of water 1 2 0AP
zS yS

w
  

U-Tube manometers
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Where w is the specific weight of water

If A contains gas S1 = 0 2 0AP
yS

w
 



Single column manometers

0 0

y
B

h1

h2

One of the limbs of U-tube

manometer is replaced by a

reservoir of large cross section

∆y

S1

S2

When not connected 1 1 2yS h S

When connected
2A y ah 

A = area of tank

a = area of limb

The manometric expression starting from free end: 

2 1 2 10 ( ) ( ) AP
h h y S y y S
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Inclined single column manometers
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Differential manometers

Used for measuring the difference of pressure between any two points in a 

pipeline or in two pipes or a containers

Usually consists of a glass U-tube two ends of which are connected to two 

gage points

Two piezometer manometer

Inverted U-tube manometers

U-Tube manometers

Micro manometers

Common types of differential manometers
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h

Two-Piezometer Differential Manometer

A B

A BP P
h

w w
 
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Inverted U-Tube Differential Manometer
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Manometric expression
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D



Inverted U-Tube Differential Manometer
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Manometric expression
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U-Tube Differential Manometer
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1 2 1( )A BP P
y x S xS yS

w w
    

2 1( )A BP P
x S S

w w
  

Manometric expression

x

y

A B

C C

Sp. Gr. = S2

D

Sp. Gr. = S1



U-Tube Differential Manometer with two points 

at different levels
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B

x

y

C

Sp. Gr. = S2

Sp. Gr. = S1

z

A
Sp. Gr. = S3

1 2 3( )A BP P
z y x S xS yS

w w
     

 2 1 3 1 1( ) ( )A BP P
x S S y S S zS

w w
     

Manometric expression



Micromanometer
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Used for measurement of

very small difference in

pressure with precision

Two manometric fluids

and two basins with large

cross sectional area

Manometric 

liquid 1

Sp Gr. S2

x
x/2

x/2

Sp. Gr. = S3

y1

∆y

∆y

Manometric 

liquid 1

Sp Gr. S1

B
A

C C’

D’D

E E’

( )
2

x
A y a

 
   

 

Volume displacement in 

basin and limb is same

When not connected

fluids stands at C-C’ and

D-D’

y2



Micromanometer
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 1 2
A BP P

x S S
w w
  

Micromanometer
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a<<A

 Invented by Chattock Small and Krell

These are very sensitive to pressure differences

down to less than 0.0025 mm of water

Disadvantage – appreciable time is required for

taking the reading and hence are used for

completely steady pressures



What is the absolute pressure at a point

10 m below the free surface in a fluid that

has a variable density in kilogram per

cubic meters given by ρ= 450+ah, in

which a = 12 kg/m4 and h is the distance

in meters measured from the free surface?



Determine the pressure at points 

A,B,C and D in Pascal’s 

waterwater

D

C

B

A

air

Air

90 cm

30 cm

90 cm

30 cm



Hydrostatic Forces on Surfaces

Total pressure – The force exerted by fluid on the surface 

which is immersed in the static mass of fluid is called total 

pressure. It is always exerted in the direction normal to the 

surface.

SI Unit - N

Centre of Pressure – Point of application of total pressure

Vertical surface

Important definitions
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Total Pressure on the horizontal 

surface

h
P Horizontal plane 

of area A

( )P pA wh A wAh  

Free surface
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The centre of pressure is the centroid of the surface



Total Pressure on the Vertical Surface

The pressure intensity is not constant on the surface since depth 

varies (Thus,                )P p A 

For horizontal strip of thickness ‘dx’ and width ‘b’

dA b dx 

Total pressure on the strip dP wxdA wxbdx 
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x

CG

CP

h

x

dx

b

O O



Total Pressure on the Vertical Surface

Total pressure on entire plane ( )xP d bw dP x  
The term              is the sum of first moment of areas of the 

strips about axis OO (through free surface)

 It is also given by the product of total area of the surface (A) 

and the distance of CG from the free surface (OO)

( )x bdx

( )x bdx AxThus

P Awx

Hence the total pressure is equal to the product of

pressure intensity at centroid and area of the

surface
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Centre of Pressure for a Vertical Surface

Vertical surface

Since the pressure intensity varies with depth total pressure is not 

exerted through CG

Moment of total pressure on the strip with OO 

2( ) ( )dP x wx bdx x wx bdx  

Sum of moment of total pressure with OO 

2 ( )x ddP x w b x  

Moment of resultant of the system is equal to sum of the

moments of components about the same axis

2 ( )Ph w x bdx 
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Centre of Pressure for a Vertical Surface

The term              is the sum of the second moment of areas of 

the strips about axis OO (through free surface)

2 ( )x bdx

 It is also given moment of inertia about OO

2 ( )OI x bdx Thus

OPh wI O OwI wI
h

P wAx
 

2

O GI I Ax We know Parallel axis theorem

Thus
GIh x

Ax
  h x



Total Pressure on an Inclined Surface

CG

CP

xh
x

θ

dA

y

yp

Total pressure on the strip ( s )indP wx AydA w d 

y

Thus sinydAP w  
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O

O



ydA First moment of area given by Ay

( sin )P wA y 

Total Pressure on an Inclined Surface

P wxA

Hence the total pressure is equal to the product of

pressure intensity at centroid and area of the

surface which is also true for vertical surface
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Centre of Pressure for a Inclined Surface

Let,       = vertical depth of CP 

= distance of CP from OO along normal to free surface

h

py

( sin )dP w y dAWe know

2sindP y w y dA 

Moment of total pressure with OO pPy

2sinp y dP Ay w  
sin sinO O

p

w I w I
y

P wAx

 
 

2

Oy dA I
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GIh x
Ax

 

2sinGIh x
Ax


 

2

O GI I Ay  sin
p

h
y




sin

x
y




Centre of Pressure for a Inclined Surface

For θ = 90° Similar to vertical plane
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Centre of Pressure for a Curved Surface

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

P pdA 

Direction of total

pressure on the area

of surface varies

sin sin

cos cos

H

V

dP dP pdA

dP dP pdA

 

 

 

 

The total pressure dP acting on dA can be resolved as

A

C

B

E

D

F

θ

dP

dPH

dPV

PV

P
H

dA



sin

cos

H H

V V

P dP w h

P dP w h

dA

dA





 

 

 

 

Centre of Pressure for a Curved Surface
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sindA  represents vertical projection of dA

( ) sinwh dA  represents total pressure on vertical trace of dA

 Thus component of total pressure in horizontal direction is total 

pressure on its vertically projected area CD



cosdA  represents horizontal projection of dA

( ) coswh dA  represents total pressure on horizontal trace of dA

 Thus component total pressure in the vertical direction is total 

pressure on its horizontally projected area

Centre of Pressure for a Curved Surface
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Similarly

cosVP whdA   represents the weight of the liquid above ABCDEFA

2 2 1tan    and   V
H V

H

P
P P P

P
   

    
 

Thus,



Practical applications - Dams
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H

2/3(H)

H/3

( 1)
2

Total Pressure per unit length of dam,

                
H

P wAx w H  

2

2

wH
P 

31
1

12

2 ( 1) / 2

2

3

Centre of Pressure

GIh x
Ax

H
H

h
H H

h H

 

 

 
 





Practical applications - Gates
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H1

11 1

22 2

( / 2)

( / 2)

Total Pressure per unit length of dam,

                

               

P wAx wA H h

P wAx wA H h

  

  

1 2P P P 
P1

P2

H2

h

Resultant force experienced 

by the gate



Buoyancy and Floatation
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Important definitions

Buoyancy – Tendency of the partially or fully immersed body to be 

lifted up in the fluid is known as buoyancy.

Buoyant Force – The force tending to lift the body upward is 

known as buoyant force

Center of Buoyancy – The point of application of the buoyant force 

is known as center of buoyancy.

Archimedes’ Principle – When a body is fully or partially immersed 

in the fluid it is buoyed up by a force which is equal to the weight of 

fluid displaced by the body.



Buoyant Force on Fully Submerged Body
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h2

Specific weight = w

dA

p1dA

p2dA

M

N

y

h1

A

D

C

B

Resultant horizontal

force on the body = 0

Buoyant force on the

strip of elemental area

dA

2 1

2 1

( )

( )       =

      

       = 

BdF p dA p dA

w h h dA

wydA

wdV

 





B BF dF wdV wV   

B

FB



Buoyant Force on Partially Submerged Body
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dA

P1dA

P2dA

M

N

y1

h1

h2

Specific weight = w1

Specific weight = w2y2

 
2 1

1 1 1 2 2 1 1

1 1 2 2

1 1 2 2

( )

( ) ( )

( )

=

      

       = 

BdF p dA p dA

w h y w y w h dA

w y w y dA

w dV w dV

 

  

 



1 1 2 2( )BF wV w V 



Specific weight = w

B

FB

G

Buoyant Force on Body Floating in Air
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The weight of the air displaced by the body can be neglected as 

specific weight of air is negligible

BF wV W  W is the weight of liquid displaced



Metacentre and Metacentric Height
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Metacentre is defined as the point of intersection between the axis of the

floating body passing through points B and G and a vertical line passing

through the new centre of buoyancy B1.

For small θ the position of M is practically same.

 The distance between the centre of gravity G and the metacentre M of a 

floating body (i. e. GM) as θ→0, is known as metacentric height

G

W

B

FB = W

M

FB = W

θ

B1



Stability of Submerged and Floating Bodies
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Stability of submerged or floating body

- Tendency of the body to return to the original upright 

position after it has been slightly displaced.

When a submerged or floating body is given a slight angular

displacement it may have either of the following three conditions

of equilibrium

Stable equilibrium

Unstable equilibrium

Neutral equilibrium



A body is said to be in a state of stable equilibrium if small angular

displacement sets up a couple which oppose the angular

displacement and brings back the body to its original position.

Stability of Submerged and Floating Bodies
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A body is said to be in a state of unstable equilibrium if small

angular displacement sets up a couple which tends to further

increase the angular displacement and thereby not allowing the

body to its original position.

A body is said to be in a state of neutral equilibrium if small

angular displacement does not set up a couple of any kind and

therefore the body adopts a new position given to it by angular

displacement.



B

FB=W

W

G

B

FB=W

W

G
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Stability of Fully Submerged Body

Balloon floating in a air
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Stability of Fully Submerged Body

FB=W

W

G

B

G

W

FB=W

B

Submarine floating in sea

The fully submerged body is in stable equilibrium if centre of gravity 

is below centre of buoyancy

Condition for stable equilibrium
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Stability of Partially Submerged Body

G

W

B

FB = W

B B1

M

sinGM 

G

FB = W

W

Overturning 

couple

Restoring couple sinW GM 

Floating body in a stable equilibrium

BM BG
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Stability of Partially Submerged Body

Floating body in a unstable equilibrium

G

W

B

FB = W B

B1

M

sinGM 

G

FB = W

W

Overturning couple

Overturning couple sinW GM 

θ

BM BG
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Importance of Stability of Floating Objects

 Boats, ships etc are the important objects which are 

subjected to external forces

 Wind forces, wave forces, pressure due to tidal or river 

currents, pressure due to maneuvering a boat or ship 

in a curved path

 Shifting of cargo may cause heeling

 Movements of passengers also develops overturning 

couple

 Thus the care has to be taken in the design of boats or 

ship so that metacentre is kept well above centre of 

gravity

 CG can be lowered by permanently loading the ship or 

boat



C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Determination of Metacentric Height

G
W

B

l

Experimental Method

w – movable weight placed on a deck

W – Total weight including weight of deck

G

FB=W

B

w

B1

G’

M

x

Plumb line

d

θ



Determination of Metacentric Height

'( )wx W GG

'( ) ( ) tanGG GM  ( ) tanW GM wx 

( )
tan

wx
GM

W 
 tan

d

l
 Thus

( )
wx l

GM
W d

 
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Determination of Metacentric Height
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Theoretical Method

G
W

B

G

FB=W

B B1

Mx

θA DC
A

A’

D

D’

θ

dx

dA

Sectional plan at 

water surface

θx

O

L



Determination of Metacentric Height
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In the tilted position the portion AOA’ has emerged out

The portion DOD’ has moved down in the liquid

Assume that there is no vertical movement

Volume corresponding to AOA’ and DOD’ is equal

BF BM  The moment of buoyant force is

Volume of each prism = L xdx

Weight of the liquid in each prism = wL xdx

2
Moment of pair of the forces due to 
emrging and going down of wedges = x wL xdx



2 22 2B x dF BM w x Ld w Ax      

Determination of Metacentric Height
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dA Ldx

22 x dA Moment of inertia I of the cross sectional area of 

ship at water surface about its longitudinal axis

B

wI wI I
BM

F wV V
   V is volume of liquid 

displaced by ship
Thus

I
GM BM BG BG

V
    If metacentre M lies above CG, G

I
GM BG BM BG

V
    If metacentre M lies below CG, G



I
GM BG

V

 
   

 

Determination of Metacentric Height
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Thus,

I
BG

V
 Stable equilibrium

I
BG

V
 Unstable equilibrium



Problem
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2.1 A cylindrical buoy, diameter 1.5 m and 1.1 m high weighing 4.450 kN is

floating in sea water with its axis vertical. Find the maximum permissible

height above the top of the buoy, of the centre of gravity of a 450 N load which

is placed centrally on top of the buoy. (Specific gravity of the seat water is

1.025)

1.5 m

x

Load

Buoy

450 N

1.1 m

0.267 m

G’
G

0.55 m

4.450 kN
xB

0.138 m

Solution

Weight of the sea water displaced

= (4450+450) = 4900 N

Volume of sea water displaced is

4900
0.487

1.025 9810
3 mV  



2

0487
0.276

( / 4) 1.5
Depth of immersion  m


 



0.276
0.138

2

Height of Centre of Buoyancy above the base

 m 



Problem
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The position of combined centre of gravity of buoy and the load may be

obtained by taking moments total weight (acting at G’) about the base of the

buoy and equating it with the sum of moments of weight of buoy and weight

of load about base of the buoy

1.1
4900 4450 450

2
x x    Thus,

(0.499 0.092 )x x 

The diagram suggests ' 'BG OG OB 

0.138

(0.499 0.092 ) 0.138

(0.361 0.092 )

x

x

x

 

  

 



Problem
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4(1.5) ; 0.487
64

4 3
 m   mI V


 I

BM
V

We know

4(1.5)
0.510

64 0.487
 mBM


  

For stable equilibrium of the floating buoy

'BM BG 0.510 (0.361 0.092 )x  0.092 0.149x 

Thus, 1.62 mx 

Thus the CG of the load must not be more than (1.62-1.1) = 0.51 m

above the top of the buoy - answer


