Fluid Mechanics Unit 2- Fluid Statics

Prof. C. M. Sewatkar

Department of Mechanical Engineering, Govt. College of Engineering and Research , Avasari (Kh) Tq: Ambegaon, Dist: Pune

Fluid Statics

\square Fluid Pressure or pressure intensity, $p=d F / d A \quad p \neq F / A$
\square Force always acts in the direction
normal to the wall
\square SI unit - N/m² or Pascal

Variation of Pressure in a Fluid

For equilibrium

$$
\sum F_{X}=0 \quad \sum F_{Z}=0 \quad \sum F_{Z}=0
$$

Fluid Pressure and Its Measurement

$\sum F_{X}=0 \square \frac{\partial p}{\partial x}=0 \quad \sum F_{Y}=0 \square \frac{\partial p}{\partial y}=0$

$$
\sum F_{Z}=0 \quad \square \frac{\partial p}{\partial z}=-w
$$

$$
\frac{d p}{d z}=-w=\rho g
$$

Thus the pressure intensity varies only in the vertical direction in the static mass of fluid and it increases with the depth of the fluid

Pressure at a point in a liquid

We know $\frac{d p}{d z}=-w \square p=-w z+C$
DFor free surface pressure is atmospheric, p_{a}
$\square \mathrm{z}=\left(\mathrm{H}+\mathrm{z}_{\mathrm{o}}\right)$
DHence $\mathrm{C}=\left[\mathrm{pa}+\mathrm{w}\left(\mathrm{H}+\mathrm{z}_{\mathrm{o}}\right)\right.$

$p=-w z+\left[p_{a}+w\left(H+z_{o}\right)\right]$

For point in liquid $z=\left(H+z_{o}-h\right) \quad$ Thus, $\quad p=p_{a}+w h$

If atmospheric pressure is considered as datum $\quad p=w h$

$$
p=w_{1} h_{1}=w_{2} h_{2} \quad S_{1} h_{1}=S_{2} h_{2}
$$

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Pressure head

\square The vertical height of the free surface above any point in a liquid at rest is known as pressure head. Thus,

$$
h=\frac{p}{w}
$$

Dlt is a convenient to express the pressure in terms of vertical height of the liquid since the pressure depends on only vertical height
\square Thus pressure can be expressed in meters of liquid column
DThe equation $p=w h$ can be used to obtain the relationship between heights of columns of different liquids for same pressure

$$
p=w_{1} h_{1}=w_{2} h_{2} \quad \triangleleft \quad w S_{1} h_{1}=w S_{2} h_{2} \quad \triangleleft \quad S_{1} h_{1}=S_{2} h_{2}
$$

Where, w is the specific weight of water and S1 and S2 are the specific gravities of two different fluids
C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Pascal's Law

Pressure at a point in a fluid acts with same magnitude in all the directions

Pascal's Law

\square Resolving the forces along X and Z direction and equating with zero gives:

$$
\begin{aligned}
& p_{x} \delta y \delta z-p_{s} \delta y \delta s \sin \alpha=0 \\
& p_{z} \delta x \delta y-p_{s} \delta y \delta s \cos \alpha-w \frac{1}{2} \delta x \delta y \delta z=0 \\
& \delta s \sin \alpha=\delta z \text { and } \delta s \cos \alpha=\delta x
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& p_{x}-p_{s}=0 \\
& p_{z}-p_{s}=0
\end{aligned}
$$

Hence

$$
p_{s}=p_{x}=p_{z}
$$

Which means pressure acts equally in all directions as \mathbf{S} direction is arbitrarily chosen. This is known as Pascal's law
C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Atmospheric, absolute, gage and vacuum pressure
$>$ Atmospheric air exerts normal pressure up on all the surfaces with which it is in contact and it is known as atmospheric pressure (Varies with altitude, measured by barometer and hence called barometric pressure)
$>$ At sea level - $10.1043 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$ or 1.01043 bar or 10.3 m of water or 76 cm of Hg .
$>$ Absolute zero or local atmospheric pressure can be the base for measurement
$>$ If measured with reference to atm pressure it is called gage pressure (Negative gage pressure is vacuum)
$>$ If measured with respect to absolute zero it is called absolute pressure

Atmospheric, absolute, gage and vacuum pressure

Pressure Measurement

Manometers

Simple Manometers

\square Piezometers
\square U-tube manometers
\square Single column manometers
\square Inclined single column manometers

Mechanical gauges

\square Two piezometer manometer
\square Inverted U-tube manometers
\square U-Tube manometers
\square Micro manometers

Piezometers -simplest manometers

Can measure only moderate pressures
$>$ Location of insertion makes no difference
$>$ Can not be used for gases (no free surfaces are formed)

Negative pressure measurement
C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

U-Tube manometers

Manometric fluid $>A$ glass U-tube with heavier (Sp. Gr. S ${ }_{2}$) manometric fluid is used

Procedure to write manometric expression
$>$ Start from A or free surface and write pressure there in appropriate unit ($\mathrm{N} / \mathrm{m}^{2}$ or m of $\mathrm{H}_{2} \mathrm{O}$)
$>$ Add the change in pressure caused due to change from one level to adjacent level.
$>$ Use +ve if the adjacent level is lower.
$>$ Use -ve sign if it is higher.
>Continue till other end and equate with pressure at that point

U-Tube manometers

- Manometric expression in terms of liquid at $\mathbf{A} \square \frac{P_{A}}{w S_{1}}-z-y \frac{S_{2}}{S_{1}}=0$ Where w is the specific weight of water
\square Manometric expression in terms of water

$$
\square \frac{P_{A}}{w}-z S_{1}-y S_{2}=0
$$

Ilf A contains gas $\mathbf{S}_{\mathbf{1}}=\mathbf{0}$

$$
\square \quad \frac{P_{A}}{w}-y S_{2}=0
$$

Single column manometers

DOne of the limbs of U-tube manometer is replaced by a reservoir of large cross section

When not connected $y S_{1}=h_{1} S_{2}$
When connected

$$
A \Delta y=a h_{2}
$$

$>$ The manometric expression starting from free end:

$$
\begin{gathered}
0+\left(h_{2}+h_{1}+\Delta y\right) S_{2}-(\Delta y+y) S_{1}=\frac{P_{A}}{w} \\
\frac{P_{A}}{w}=h_{2}\left[\left(S_{2}+\left(S_{2}-S_{1}\right) \frac{a}{A}\right] \square \frac{P_{A}}{w}=h_{2} S_{2}\right.
\end{gathered}
$$

Inclined single column manometers

Differential manometers

$>$ Used for measuring the difference of pressure between any two points in a pipeline or in two pipes or a containers
>Usually consists of a glass U-tube two ends of which are connected to two gage points

Common types of differential manometers
-Two piezometer manometer IInverted U-tube manometers -U-Tube manometers
-Micro manometers

Two-Piezometer Differential Manometer

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Inverted U-Tube Differential Manometer

Manometric expression

$$
\frac{P_{A}}{w}-y S_{1}+(y-h) S_{1}=\frac{P_{B}}{w}
$$

$$
\frac{P_{A}}{w}-\frac{P_{B}}{w}=h S_{1}
$$

With air as manometric fluid

Inverted U-Tube Differential Manometer

With lighter fluid as manometric fluid

U-Tube Differential Manometer

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

U-Tube Differential Manometer with two points at different levels

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Micromanometer

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Micromanometer

Manometric expression

$$
\begin{gathered}
\frac{P_{A}}{w}+\left(y_{1}+\Delta y\right) S_{3}+\left(y_{2}-\Delta y+\frac{x}{2}\right) S_{2} \\
-x S_{1}-\left(y_{2}-\frac{x}{2}+\Delta y\right) S_{2}-\left(y_{1}-\Delta y\right) S_{3}=\frac{P_{B}}{w} \\
\square \Delta y=\frac{a}{A}\left(\frac{x}{2}\right) \\
\frac{P_{A}}{w}-\frac{P_{B}}{w}=-y_{1} S_{3}-\frac{a}{A} \frac{x}{2} S_{3}-y_{2} S_{2}+\frac{a}{A} \frac{x}{2} S_{2}-\frac{x}{2} S_{2} \\
+x S_{1}+y_{2} S_{2}-\frac{x}{2} S_{2}+\frac{a}{A} \frac{x}{2} S_{2}+y_{1} S_{3}-\frac{a}{A} \frac{x}{2} S_{3}
\end{gathered}
$$

Micromanometer

$a \ll A$

$$
\frac{P_{A}}{w}-\frac{P_{B}}{w}=x\left[S_{1}-S_{2}\right]
$$

$>$ Invented by Chattock Small and Krell
$>$ These are very sensitive to pressure differences down to less than 0.0025 mm of water
> Disadvantage - appreciable time is required for taking the reading and hence are used for completely steady pressures

What is the absolute pressure at a point 10 m below the free surface in a fluid that has a variable density in kilogram per cubic meters given by $\rho=450+a h$, in which $\mathbf{a}=12 \mathrm{~kg} / \mathrm{m} 4$ and \mathbf{h} is the distance in meters measured from the free surface?

Determine the pressure at points A, B, C and D in Pascal's

Hydrostatic Forces on Surfaces

Important definitions

Total pressure - The force exerted by fluid on the surface which is immersed in the static mass of fluid is called total pressure. It is always exerted in the direction normal to the surface.

SI Unit - N

Centre of Pressure - Point of application of total pressure

Total Pressure on the horizontal surface

Free surface

$$
P=p A=(w h) A=w A h
$$

The centre of pressure is the centroid of the surface

Total Pressure on the Vertical Surface

$>$ The pressure intensity is not constant on the surface since depth varies (Thus, $P \neq p \times A$)
>For horizontal strip of thickness ' $d x$ ' and width ' b '

$$
d A=b \times d x
$$

$>$ Total pressure on the strip

$$
d P=w x d A=w x b d x
$$

Total Pressure on the Vertical Surface

$>$ Total pressure on entire plane $P=\int d P=w \int x(b d x)$
$>$ The term $\int x(b d x)$ is the sum of first moment of areas of the strips about axis $\mathbf{O O}$ (through free surface)
$>$ It is also given by the product of total area of the surface (A) and the distance of CG from the free surface (OO)

Thus

$$
\begin{aligned}
& \int x(b d x)=A \bar{x} \\
& P=w \bar{x} A
\end{aligned}
$$

Hence the total pressure is equal to the product of pressure intensity at centroid and area of the surface

Centre of Pressure for a Vertical Surface

$>$ Since the pressure intensity varies with depth total pressure is not exerted through CG
$>$ Moment of total pressure on the strip with 00

$$
d P \times x=w x(b d x) x=w x^{2}(b d x)
$$

$>$ Sum of moment of total pressure with 00

$$
\int d P \times x=w \int x^{2}(b d x)
$$

$>$ Moment of resultant of the system is equal to sum of the moments of components about the same axis

$$
P \bar{h}=w \int x^{2}(b d x)
$$

Centre of Pressure for a Vertical Surface

$>$ The term $\int x^{2}(b d x)$ is the sum of the second moment of areas of the strips about axis $\mathbf{O O}$ (through free surface)
$>$ It is also given moment of inertia about $\mathbf{O O}$

$$
\begin{aligned}
& \text { Thus } I_{O}=\int x^{2}(b d x) \\
& P \bar{h}=w I_{O} \quad \square \bar{h}=\frac{w I_{O}}{P}=\frac{w I_{O}}{w A \bar{x}}
\end{aligned}
$$

We know $\quad I_{O}=I_{G}+A \bar{x} \bar{x}^{2} \longleftarrow$ Parallel axis theorem

Thus

$$
\bar{h}=\bar{x}+\frac{I_{G}}{A \bar{x}} \longmapsto \bar{h}>\bar{x}
$$

Total Pressure on an Inclined Surface

$>$ Total pressure on the strip $\quad d P=w x d A=w(y \sin \theta) d A$
Thus

$$
P=\int y d A \times w \sin \theta
$$

Total Pressure on an Inclined Surface

$\int y d A \leadsto$ First moment of area given by $A \bar{y}$

$$
\begin{gathered}
P=w A(\bar{y} \sin \theta) \\
P=\bar{w} \bar{x} A
\end{gathered}
$$

Hence the total pressure is equal to the product of pressure intensity at centroid and area of the surface which is also true for vertical surface

Centre of Pressure for a Inclined Surface

Let, $h=$ vertical depth of CP
$y_{p}=$ distance of $\mathbf{C P}$ from $\mathbf{O O}$ along normal to free surface
We know

$$
\begin{gathered}
d P=w(y \sin \theta) d A \\
d P \times y=\frac{\curvearrowleft}{w} \sin \theta y^{2} d A
\end{gathered}
$$

Moment of total pressure with $00=P y_{p}$

$$
\begin{gathered}
P y_{p}=w \sin \theta \int y^{2} d A \\
y_{p}=\frac{w \sin \theta I_{O}}{P}=\frac{w \sin \theta I_{O}}{w A \bar{x}}
\end{gathered}
$$

Centre of Pressure for a Inclined Surface

$$
I_{O}=I_{G}+A \bar{y}^{2}
$$

$$
\bar{y}=\frac{\bar{x}}{\sin \theta}
$$

$$
\bar{h}=\bar{x}+\frac{I_{G} \sin ^{2} \theta}{A \bar{x}}
$$

For $\boldsymbol{\theta}=\mathbf{9 0}{ }^{\circ}$

$$
\bar{h}=\bar{x}+\frac{I_{G}}{A \bar{x}}
$$

Similar to vertical plane

Centre of Pressure for a Curved Surface

Direction of total pressure on the area of surface varies

$$
P \neq \int p d A
$$

The total pressure dP acting on dA can be resolved as

$$
\begin{aligned}
& d P_{H}=d P \sin \theta=p d A \sin \theta \\
& d P_{V}=d P \cos \theta=p d A \cos \theta
\end{aligned}
$$

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Centre of Pressure for a Curved Surface

$$
\begin{aligned}
& P_{H}=\int d P_{H}=w \int h d A \sin \theta \\
& P_{V}=\int d P_{V}=w \int h d A \cos \theta
\end{aligned}
$$

$>d A \sin \theta$ represents vertical projection of $d A$
$>(w h) d A \sin \theta$ represents total pressure on vertical trace of $d \mathbf{A}$
$>$ Thus component of total pressure in horizontal direction is total pressure on its vertically projected area CD

Centre of Pressure for a Curved Surface

Similarly
$>d A \cos \theta$ represents horizontal projection of dA
$>(w h) d A \cos \theta$ represents total pressure on horizontal trace of dA
$>$ Thus component total pressure in the vertical direction is total pressure on its horizontally projected area
$P_{V}=\int w h d A \cos \theta$ represents the weight of the liquid above ABCDEFA
Thus, $\quad P=\sqrt{P_{H}^{2}+P_{V}^{2}} \quad$ and $\quad \theta=\tan ^{-1}\left(\frac{P_{V}}{P_{H}}\right)$

Practical applications - Dams

Total Pressure per unit length of dam,

$$
P=w A \bar{x}=w(H \times 1) \frac{H}{2}
$$

Centre of Pressure

$$
\begin{aligned}
& \bar{h}=\bar{x}+\frac{I_{G}}{A \bar{x}} \\
& \bar{h}=\frac{H}{2}+\frac{\frac{1}{12} \times 1 \times H^{3}}{(H \times 1) \times H / 2}
\end{aligned}
$$

$$
\bar{h}=\frac{2}{3} H
$$

Practical applications - Gates

Total Pressure per unit length of dam,

Buoyancy and Floatation

Important definitions

$>$ Buoyancy - Tendency of the partially or fully immersed body to be lifted up in the fluid is known as buoyancy.
$>$ Buoyant Force - The force tending to lift the body upward is known as buoyant force
$>$ Center of Buoyancy - The point of application of the buoyant force is known as center of buoyancy.
$>$ Archimedes' Principle - When a body is fully or partially immersed in the fluid it is buoyed up by a force which is equal to the weight of fluid displaced by the body.

Buoyant Force on Fully Submerged Body

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Buoyant Force on Partially Submerged Body

$$
F_{B}=\left(w_{1} \overline{V_{1}}+w_{2} \overline{V_{2}}\right)
$$

$$
\begin{aligned}
& d F_{B}=\left(p_{2} d A-p_{1} d A\right) \\
& =\left[w_{1}\left(h_{1}+y_{1}\right)+w_{2} y_{2}-\left(w_{1} h_{1}\right)\right] d A \\
& \quad=\left(w_{1} y_{1}+w_{2} y_{2}\right) d A \\
& \quad=w_{1} d \bar{V}_{1}+w_{2} d \overline{V_{2}}
\end{aligned}
$$

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Buoyant Force on Body Floating in Air

The weight of the air displaced by the body can be neglected as specific weight of air is negligible

Metacentre and Metacentric Height

$>$ Metacentre is defined as the point of intersection between the axis of the floating body passing through points B and G and a vertical line passing through the new centre of buoyancy B_{1}.
$>$ For small θ the position of M is practically same.
$>$ The distance between the centre of gravity G and the metacentre M of a floating body (i. e. GM) as $\boldsymbol{\theta} \rightarrow \mathbf{0}$, is known as metacentric height

Stability of Submerged and Floating Bodies

Stability of submerged or floating body

- Tendency of the body to return to the original upright position after it has been slightly displaced.

When a submerged or floating body is given a slight angular displacement it may have either of the following three conditions of equilibrium

$>$ Stable equilibrium
 >Unstable equilibrium
 $>$ Neutral equilibrium

Stability of Submerged and Floating Bodies

A body is said to be in a state of stable equilibrium if small angular displacement sets up a couple which oppose the angular displacement and brings back the body to its original position.

A body is said to be in a state of unstable equilibrium if small angular displacement sets up a couple which tends to further increase the angular displacement and thereby not allowing the body to its original position.

A body is said to be in a state of neutral equilibrium if small angular displacement does not set up a couple of any kind and therefore the body adopts a new position given to it by angular displacement.

Stability of Fully Submerged Body

Balloon floating in a air
C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Stability of Fully Submerged Body

Submarine floating in sea

Condition for stable equilibrium
The fully submerged body is in stable equilibrium if centre of gravity is below centre of buoyancy

Stability of Partially Submerged Body

Floating body in a stable equilibrium

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Stability of Partially Submerged Body

Floating body in a unstable equilibrium

Importance of Stability of Floating Objects

$>$ Boats, ships etc are the important objects which are subjected to external forces
> Wind forces, wave forces, pressure due to tidal or river currents, pressure due to maneuvering a boat or ship in a curved path
$>$ Shifting of cargo may cause heeling
$>$ Movements of passengers also develops overturning couple
$>$ Thus the care has to be taken in the design of boats or ship so that metacentre is kept well above centre of gravity
$>$ CG can be lowered by permanently loading the ship or boat

Determination of Metacentric Height

Experimental Method

$$
w x=W\left(\overline{G G^{\prime}}\right)
$$

$(\overline{G G})=(\overline{G M}) \tan \theta \quad \square W(\overline{G M}) \tan \theta=w x$

Thus

$$
(\overline{G M})=\frac{w x}{W \tan \theta} \quad \tan \theta=\frac{d}{l}
$$

C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Determination of Metacentric Height

Theoretical Method

Determination of Metacentric Height

$>$ In the tilted position the portion AOA' has emerged out
$>$ The portion DOD' has moved down in the liquid
$>$ Assume that there is no vertical movement
$>$ Volume corresponding to AOA' and DOD' is equal

The moment of buoyant force is $F_{B} \times \overline{B M} \times \theta$
Volume of each prism $=L \theta x d x$
Weight of the liquid in each prism $=w L \theta x d x$
Moment of pair of the forces due to emrging and going down of wedges $=2 x \times w L \theta x d x$

Determination of Metacentric Height

$$
F_{B} \times \overline{B M} \times \theta=2 w \theta \int x^{2} L d x=w \theta 2 \int x^{2} d A \quad d A=L d x
$$

$2 \int x^{2} d A \longmapsto$ Moment of inertia I of the cross sectional area of ship at water surface about its longitudinal axis

Thus

$$
\overline{B M}=\frac{w I}{F_{B}}=\frac{w I}{w V}=\frac{I}{V}
$$

V is volume of liquid displaced by ship

$$
\overline{G M}=\overline{B M}-\overline{B G}=\frac{I}{V}-\overline{B G} \quad \text { If metacentre } \mathrm{M} \text { lies above } \mathbf{C}, \mathbf{G}
$$

$$
\overline{G M}=\overline{B G}-\overline{B M}=\overline{B G}-\frac{I}{V}
$$

If metacentre M lies below CG, G

Determination of Metacentric Height

Thus,

$$
\overline{G M}= \pm\left(\frac{I}{V}-\overline{B G}\right)
$$

$\frac{I}{V}>\overline{B G}$

$\frac{I}{V}<\overline{B G}$

Unstable equilibrium
C. M. Sewatkar, Faculty, Mech. Engg. Dept., GCOEARA

Problem

2.1 A cylindrical buoy, diameter 1.5 m and 1.1 m high weighing 4.450 kN is floating in sea water with its axis vertical. Find the maximum permissible height above the top of the buoy, of the centre of gravity of a 450 N load which is placed centrally on top of the buoy. (Specific gravity of the seat water is 1.025)

Solution
Weight of the sea water displaced

$$
=(4450+450)=4900 \mathrm{~N}
$$

Buoy
Volume of sea water displaced is

$$
V=\frac{4900}{1.025 \times 9810}=0.487 \mathrm{~m}^{3}
$$

$$
\text { Depth of immersion }=\frac{0487}{(\pi / 4) \times 1.5^{2}}=0.276 \mathrm{~m}
$$

Height of Centre of Buoyancy above the base

$$
=\frac{0.276}{2}=0.138 \mathrm{~m}
$$

Problem

The position of combined centre of gravity of buoy and the load may be obtained by taking moments total weight (acting at G') about the base of the buoy and equating it with the sum of moments of weight of buoy and weight of load about base of the buoy

$$
\text { Thus, } \begin{gathered}
4900 \times \bar{x}=4450 \times \frac{1.1}{2}+450 \times x \\
\bar{x}=(0.499+0.092 x)
\end{gathered}
$$

The diagram suggests $\overline{B G}=\overline{O G^{\prime}}-\overline{O B}$

$$
\begin{aligned}
& =\bar{x}-0.138 \\
& =(0.499+0.092 x)-0.138 \\
& =(0.361+0.092 x)
\end{aligned}
$$

We know $\quad \overline{B M}=\frac{I}{V} \quad I=\frac{\pi}{64}(1.5)^{4} \mathbf{m}^{4} ; V=0.487 \mathbf{m}^{3}$

$$
\overline{B M}=\frac{\pi}{64} \times \frac{(1.5)^{4}}{0.487}=0.510 \mathrm{~m}
$$

For stable equilibrium of the floating buoy

$$
\overline{B M}>\overline{B G^{\prime}} \square 0.510>(0.361+0.092 x) \quad \square 0.092 x<0.149
$$

Thus, $\quad x<1.62 \mathrm{~m}$
Thus the CG of the load must not be more than (1.62-1.1) $=0.51 \mathrm{~m}$ above the top of the buoy - answer

